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PREFACE

This book is the result of an attempt to bring within two

covers a wide region of pure mathematics. Knowledge is

assumed of that part of mathematics usually required for

matriculation, namely algebra to simultaneous quadratic equa-

tions and the substance of the first four books of Euclid,

together with a very slight acquaintance with graphic algebra,

mensuration, and solid geometry. From this stage the work

is carried forward in algebra to the logarithmic series ; in

co-ordinate geometry to the nature of the general conicoid
;

in trigonometry to the use of Euler's expressions for the sine

and cosine, with a careful treatment of imaginary quantities
;

in calculus to definite integration and to the maxima of

a function of n independent variables ; together with the pure

geometry which is necessary for the other subjects. It has

been the intention to include the bulk of the results obtained

in pure mathematics which admit of rigid proof of a fairly

easy character, and are needed by those who use pure mathe-

matics as an instrument in mechanics, engineering, physics,

chemistry, and economics. For this purpose a very great

deal that is ordinarily contained in text-books has been

thrown aside, and only those theorems and formulae which

are of direct practical application or which are necessary to

lead to others of direct practical application are retained.

It has also been the intention to give exact definitions and

strict proofs, of a more careful nature than those found in

many of the more diffuse and elementary books ; only two

difficulties have been intentionally glozed over, viz. the

nature of continuity and the nature of irrationals. Continuity

is best understood after a considerable knowledge of pro-

cesses and of functions is obtained ; experience must precede
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definition ; in this book the appeal is to graphic experience,

and the solution of equations and the determination of

maxima and minima are treated to some extent empirically.

The modern theory of irrationals is evidently unnecessary

except for the mathematical specialist. Nevertheless the great

majority of tlie functions which are tabulated in mathe-

matical tables, as being of speciallj' practical use, are irrational

for nearly all values of the variables, and therefore the method

of the passage from rational to irrational, from commensurable

to incommensurable, must be faced. In this book two methods

are used : one, in trigonometry and analytical geometry, uses

the assumption that all numerical quantities concerned can

be measured by the distance between two points on a straight

line ; in the other, in logarithms, limits, &c., irrationals are

always approximated to by the use of neighbouring rationals.

It is very commonly the case in text-books that powers

are interpreted, and the exponential theorem proved, on the

assumption that the index is rational, and that then they are

forthwith used for logarithms which are in-ational. In this,

and several other cases, a quite unpretentious attempt has

been made to restore to elementary mathematics part of the

exactness which writers have sacrificed in the desire to make
the subject easy and attractive. In particular the theory of

imaginary quantities has been recast. I have never been

able to understand, nor to believe in the logical justification

of, the accepted treatment of imaginaries ; in effect it generally

begins 'let t be a quantity such that t x i = — 1
', and continues

' multiplication by i can be represented by rotation of a

quantity through a right angle
'

; but the latter process is

only illustrative and does not make a definition, and the

former involves two conceptions in one definition, viz. t and
multiplication, and there is nothing in any previous use of

X to show how it is to be applied when the multiplier is not

real. Further, the meaning of + in the expression x + yi is

never defined.

I have therefore based the work quite differently, namely
on the use of an operator which when repeated reverses the

sign of the quantity operated on, and have followed with



PEEPACE V

definitions of and rules for the use of the symbols used. So

far as I know this method has not hitherto been used in just

this way, though all the ideas involved are quite familiar, and

have been since the time of Hamilton's invention of qua-

ternions. It appears that writers of elementary text-books

have been content to follow each other in Cauchy's steps, and

that mathematical pioneers have not had occasion to level

out this particular field.

Of the overgrowth of algebra, trigonometry, and ' conic

sections ' that has been cut awaj', much is purely traditional

(as Euclid's treatment of proportion), much is the invention of

the compiler of the cramming text-book, much of the pedagogue

anxious to occupy his boys' time. Here Ratio, Proportion,

Variation and Progressions are i educed to a very small bulk;

Indices are only developed as leading to logarithms (till we
come to series) ; Permutations and Combinations are only

wanted for the Binomial series, except for the specialist in the

Theory of Probability ; trigonometrical identities are reduced

to a utilitarian minimum.

There seems no reason why the best years of a scholar's life

should be devoted to the Conic Section, treated geometri-

cally and analytically in Cartesian co-ordinates. Geometrical

Conies is a barren field, till it is impregnated by modern

geometry. The controversy between Descartes and his con-

temporaries has still a vicious influence in the separation of

geometry from analysis and the duplication of proofs. The

sixty pages of Section VI will be found to contain the most

familiar elementary analytical results ^ as well as many of

the more purely geometrical properties, together with what is

much more important—a complete analysis of the equation of

the second degree. The time thus saved allows an excursion

in Section IX into three dimensions, where the plane analysis

can be reviewed from without, and where many methods and

results of great importance to the physicist and to other

^ Except co-iixal circles, which belong to elementary geometry, and the

equations of two straight lines and their bisectors, which are only a special

case.
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applied mathematicians are brought down from the heaven

of advanced, bulky, and expensive treatises where they have

mostly resided.

The book is intended to form a protest against the multi-

plication and separation of mathematical subjects, and against

the enormous waste of time involved in the course now
generally followed in the upper forms of Schools and the

pass work of Universities, that results in most students, who

are not mathematical specialists but want the subject for

further use, never arriving at any general knowledge of the

methods or theorems they need. Otherwise there has been

no definite aim at originality. The order of treatment has

been recast in detail, always with the idea of reaching

important and advanced results by the simplest and shortest

legitimate route, but most of the proofs are those given in one

known treatment or another. The first six sections have been

developed, so far as choice of order and proofs is concerned, in

lectures at University College, Reading, and the London

School of Economics. In many cases I have subsequently

found in new text-books methods and proofs I had already

in use, showing, I hope, that the treatment is consonant with

modern ideas of teaching. I trust that I have not unintentionally

used proofs without acknowledgement which, other recent

writers have discovered and whose origin I have forgotten.

The first three sections are cut down to their minimum, as

it is expected that readers will in fact have some preliminary

acquaintance with the subject-matter and only need a sj'ste-

matic revision. Logarithmic solution of triangles is omitted,

since it is unnecessary for the sequel, and land-surveyors and

others who have practical work to do will in any case need

a separate book. Section VII does not pretend to be more

than an introduction to the Calculus, though (as modern

writers have shown) many of the most useful results can be

obtained in a very brief argument. Mathematical physicists

and many other scientists cannot do without a much more

elaborate and general treatment. The short and easy subject

of Spherical Trigonometry is omitted as being mainly of

specialist use and readily accessible.
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Ifc is hoped that the book will supply a general aud accurate

view of that intermediate region of pure mathematics on

which are based many of the results used in other subjects.

Specialists in any branch will need in addition a treatise

relating to the subject-matter of their profession. It may
also afford a convenient book of reference to teachers, who
now and again want proofs and methods outside their routine.

It should form a useful means of revision of the principal

body of theory needed in the pass examinations of modern

Universities. It is not intended for the immature or for

those whose mind is not naturally mathematical, and it will

not in itself afford sufficient experience in the handling of

mathematical expressions— that should be obtained in con-

nexion with the particular branch which may be specially

needed.

My thanks are due to my colleagues Miss L. Ashcroft and

Mr. H. Knapman, who read critically the original manuscript

;

to Mr. G. W. Palmer (of Christ's Hospital), who has made
many valuable suggestions at various stages of the work ; and

especially to my colleague Mr. J. P. Clatworthy, who has

worked critically point by point through the manuscript and

proof at every stage and has drawn the diagrams.

A. L. BOWLEY.
University Cohege, Reading,

March, 1913.



Note.—The reader can proceed to the great part of

Section VI immediately after Section IV, and thence to

Section IX. Also Section VIII can be taken immediately

after Section V, and the great part of Section VII can be

followed without reference to Section VI.
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Logarithms to Base e.

Consider tlie equation y = e^. e* has only been assigned

a menning when x is commensurable, e is incommensurable.
e^ and y cannot be assumed to be commensurable, but approxi-

mate values can be found as follows.

Suppose a network to be ruled in the figure representing

commensurable values on the scale of x and y. The lines may
be supposed to be as near as we please. Let one of these lines

parallel to OX meet the curve representing e* at Pj, and let P^

fall between two adjacent vertical lines, ii\p^^ in^Pi,, meeting the

curve at p-^^p^- Lety^ = ifj^Pj, ic^ = Om-^, 6 = m-^m^, x^ and 8

being positive and commensurable.

Y

O
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Now write the equation in the form « = log^y.* Then if ^i

is any stated value of y, log^^j can always be identified as

between Wj and a;j + 8, where 6 is as small as we please. The

actual evaluation of logarithms is shown on pp. 127-8.

Extension of the Exponential Theorem.

If a and x are commensurable, a^ = (e'°Se'')*, by definition of

a logarithm.

Let log^a be between the near commensurable quantities h

and 5 + 6, where 8 is positive ; then

.-. «»•< l+«(6 + 8) + |-(i + 8)2 + ^(i-fg)2 + .,.(fromp. 120)

>l+.-.5+— + —+...

Thus, it is shown below that log^ 2 < -6932 > -6931. Then 2^^ is

intermediate between the results obtained by writing log,, a — •6932

and loggO! = -6931.

This result is generally, but somewhat erroneously, written

a'' = 1 + X loge a + —- (lege a)^ + . . . + — (lege a)t + . . .

.

2

!

\i\

Example. When x = Jg-. write down the remainder after three

terms in each of the two series, and hence approximate to 2'i5,

showing that it is between 1-07171 and 1-07179.

An important limit.

I ^ ( 1 + -
j =6", when X is positive and finite, and n

integral.

/ a^x" , a-' n(H — \)x^ , ., ,. . -,

For ( 1 + - ) —l+n-+ \ ' -5 + . . . by the binomial
\ n/ n 1 .2 ?i^

theorem, « being taken greater than w,

- 0--)0--)1- -
11 . \ 11/ \ 11 > .^

= ^+^+T72-"
+

TlTl ^ +

< 1 +» {—: + —I + ...to «+ 1 terms, < e* when n is finite.

* log!/ is often written for logio!/ in elementary numerical worli and for

logo!/ in theoretical analysis.
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e, 119, 244.
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Folium of Descartes, 190.
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Homologous, homologue,
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Hyperbolic functions,

247.
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CORRIGENDA

Page 7. 15th line from bottom. For M read N.
10. Ex. 2. For -347 read -00347 and for 2'5403 read -5403.

55. Ex. 8. For 48 read 86.

79. 9tli line. For rf + bx + a read ax^ + l>x + c.

84. 3rd line from bottom. For positive read negative.

87. 15th line. For = CX„{ S^c. read = a„{ SjC.

98. 10th line. For 8,^, read -Sj^j.

101. 11th line. Delete tha.t.

19th line. For x between a;, + fe read 0< |a!— a;, |
'^h.

102. 14th line. For d read I.

104. 2nd line from bottom. For 12xW read ^.
105. 2nd line. Insert L' before last fraction.

107. 7th line. Eead even or odd.

116. 5th line. In the second term re«(Z [mj]/or [mj.
120. 2nd line from bottom. For x^ read x^.

6th line from bottom. For x' read x-^'.

121. 9th line. For 2 read n.

123. 17th line. For (lose&)i read (loge a.)*:

135. 3rd line. For - read .

B B
140. 16th line. For (^,y) read {^,r,).

a' f q^ f-
143. Last paragraph. For —. ¥ —. read — + — in the three lines

a^ V rt 6

where it occurs.

150. Ex. 9. Bead without or within.

152. 11th line. For (0, ±ae) read ( + af, 0).

153. 19th line. For (0,p) read (p,0).

157. 7th line. For > read < ; and 9th line, for < read >.
19th line. Insert , after oo

.

158. 4th line from bottom. Eead The square of the length.

160. In the first five lines interchange the letters P and D,

189. 6th line. For sin'^ read 2 sin'-

195. 6th line. For 70 read 69.

203. Last line. For zero read small compared with 8a;.

265. Last line. Insert +1 after fix-^y-^z-^.

In Section VI, pp. 156 seq. and 183 seq. For the phrase ' Intersection

of the equations ' read ' Intersection of the loci represented by

the equations '.

Bowley, Pure Mathematics Face p. xii

May, 1914





SECTION I

ALGEBRA

In the beginning of Algebra, arithmetical statements are

generalized by the replacement of particular numerical cases by

letters. In the simplest cases the letters stand for positive

integers, but an extension of their meaning in two ways is

suggested by the expressions obtained ; on the one hand the

ideas of negative quantities and of the product and ratio of two

negative quantities are introduced, on the other a letter is con-

nected with a physical or geometrical measurement.

The first of these extensions affords examples of the process,

which is used frequently in the sequel, of interpreting the mean-

ing of and then defining a quantity newly introduced, so that it

is closely related to and obeys the same laws as quantities abeady

known. E.g. it is shown as generalized arithmetic that if a, h,

c, d are integers, and a, c greater respectively than b, d, then

(a~b)(c—d) = ac— hc—ad + bd.

This result is assumed to be true whatever quantities the letters

stand for, and it is found that —bx —d must then equal + bd,

and that no inconsistency is introduced if the definition thus

suggested for the meaning of the product of two negative quan-

tities is adopted. A definition arising in this way from a

generalization of a law suggested by simple cases is known as

a mathematical convention, that is, an interpretation of symbols

agreed on by mathematicians.

The second extension, that letters should measure physical or

geometrical quantities, leads to such expressions as « = v/2 (the

ratio of the diagonal of a square to its side) and « = 77 (that of

a circumference to a diameter), which cannot be expressed

exactly as integers or as the ratio of two integers, though

approximations such as \ and 3-14 — 314/100 can be found for
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them.* Quantities are said to be commensurable* (see p. 25)

when they can be expressed as 7i or n/m where n and m are

integers, and incommenstirable when they cannot be so expressed.

A final extension is that x may stand for a quantity not

realizable in the physical universe, but subject to ai-tifieial rules,

as is shown in Section VIII of this book ; such quantities are

termed imaginary, while those which can represent physical

measurements are termed real.

The process of the following article illustrates the application

of these extensions. To a law evidently true for certain letters

standing for positive integers, the convention is applied that it

shall also be true when the meaning of the letters is extended so

that they stand for commensurable fractions and for negative

quantities, and definitions are obtained. It is to be noticed that

the particular convention used- cannot readily be extended to

include incommensurables.

Indices.

In elementary algebra a^ x a^ = (a x a) X (« x a X a) = a^"^^.

Similarly, if m and n are any positive integers,

a" X a" = a"+" (i)

Here m is called the index and a™ the m^^ ^ower of a.

The expression a'^ has a defined meaning when a? is a positive

integer ; it is reasonable to extend this definition so as to in-

clude cases where x has any value, as described on the previous

page. The definitions universally adopted are obtained as in the

following paragraphs from the convention that equation (i) shall

be true when m and n are any commensurable quantities.

Definitions.

I. Let X — - , where p and q are positive integers.

Ka") = a" xa^ X...{q (actors) = a'i 1 = a' = a".

P

a' is then defined as meaning any q*^ root of a*.

Arithmetical considerations show that there is one and only

* See Appendix, p. 269.
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one real positive j'^ root when a is any positive quantity. This

is called the principal root.

[By drawing the graphs oi y — m"^, y — x^, y — »*, &c., it can

be seen that when the index is 2, 4, 6 ..., y is never negative,

and for any assigned positive value of y there is one positive

value of X and a numerically equal negative value ; whereas if

the index is 3, 5, 7 ..., y ranges through all negative values

when X is negative and through all positive values when x is

positive, . so that for any assigned positive value of y there is

one positive value of x. Hence if «' = y = a', a and therefore y
being positive, one real value of x exists, and this is the principal

value as just defined.]

It is shown algebraically (p. 231) that q different roots, positive

or negative, real or imaginary, can be identified and defined.

II. Let X = 0.

Then in accordance with equation (i), a^xa" = ft"'''" = a",

and a" = I.

a" is then defined to be unity.

III. Let X — — -
, where 7; and q are positive integers.

- x + - 1 1
a''xa''=a i = a" = 1, and a'' — — =

In the case where a — 1, a" = —- E. ff. «-*= —r.

£
In other cases the meaning of a ' is obtained from I.

E. g. a~* is unity divided by any fourth root of a^.

a" (x negative) is then defined to be the reciprocal of a"',

where «'= —x.

A meaning has now been assigned to a^ for all positive and

negative values of x which are integral or can be expressed as

the ratio of two integers, i.e. for all commensurable values of a.

No meaning has yet been assigned to such expressions as

a'^ or ay ; for these see p. 249 below.

B 2
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Division Bule.

If a;j and x^ are any commensurable quantities,

axi-i-a^a =z a^^x — =ft*J x a"^^ = a^'-^^, . . (ii)

by equation (i), which has been extended to all commensurable

indices.

Power Rule.

A. If X is any commensurable quantity and m a positive

integer,

(ft*)"' = a^'xa^x ... (m factors) = a*+*+---(»'*^™^', by equation (i),

B. If jtj and q are positive integers,

^(a==)i| - {a'^y'^^ by A, = (a^/= a^^ by A.

Similarly U = « «
'^ '= a"^-

.•. (a'')s and a t are j*'' roots of the same quantity.

. . the real positive, or principal, values of (a^)"^ and a* ^ ^^ are

equal when a; is a positive commensurable fraction, and a is

positive.

C. {a^y = 1 = a" = a^' X ».

D. If «j is a negative commensurable quantity,

.•. (a^W = 7—-— = --—
, where «' = —«, and is positive,

if a' is integral (A), or if we deal only with principal roots (B),

A, B, C, I) may be written in one statement thus :—If x, Xj

are any commensurable quantities,

(a'')'=i = a'^^' (iii)

(a) when x, is integi-al or zero, (/3) when Xj is a commen-

surable fraction, a is positive, and the principal roots of both

sides are taken.
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Distributive Rule.

I. If 11 is a positive integer,

[abY — {ah) x {ab) x ... to ii factors

— {a X a X ... to n factors} x {bxbx ... to n factors}

= a" b'K

II. li J) and q are positive integers,

( ^1' £
\{ab) ' [ = (ab) « '"'(by Power Rule) = (aS)" = a" b" by I,

and [a^ bV -ia'^) \b^) by I = as" b^ by Power Rule
;

.". («J) * and a' 5' are ^*'' roots of the same quantity, and are

equal if a and b are positive and principal roots only are taken.

III. {abf = 1 and aH" =1x1 = 1.

IV. If iKj is a negative commensurable quantity = — x',

= a-^'xJ-*'= fl:»^i. '>"!.

Hence (ab)" = a'', b'' (iv)

(i) when x is integral or zero, (ii) when x is a commensurable

fraction, and a and b are positive, if principal roots are taken

throughout.

It is now easily shown that under the same conditions

{abcd...)'= = aH'^c^cP....

Note. The separation of terms in (a + 5)" is performed by the

Binomial Tlieorem (p. 23).

The relations (i), (ii), (iii), (iv) are the Rules of Indices.

Restricting all expressions involving fractional indices for the

present to their principal roots, we can now represent the equation

y = w' giaphically, when a is positive.

To obtain the most useful graph we take a = 10.

By arithmetic processes 10^= •v/lO = 3-162—
By rule (iii) 10^ = loi^i = (v/To)i = v/3-162... = 1-778....

Similarly 10* = V'l.778 = 1-334..., lOiV = ^1.334... = 1-155....

[Continuing this process we notice that 10 ^'' approaches 1 as « is
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increased
;
this is of assistance in understanding that a" is properly

defined as unity.]

10? = loix 10* by rule (i), = 3-162... x 1.778... = 5-623...,

10^ = 10 X 10^ = 17-78..., 10-5 = 10^-1 = yio X J^ = .3152.

By such processes all the values in the following table can be

obtained, and the eighths and sixteenths can also be calculated.

1

1-78...

3.16...

5.62...

X y
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2. Express in powers of prime factors 27? x 1 728*^.

3. Simplify 62 + 242.

4. Simplify (4 a^ h-^f -^ (8 a^ h-^f.

5. Multiply {ai + bi)hy {ai-bi).

6. Divide a + 6bya'3 + 63.

7. Given 10* = 2-154... and lO* = 3-162, find 10® and loA, and
fill in the table of 10^ when x= ^,-^, x=2, ^, ^^, if, ii, and
thence when x = 1^^, —j-^, &c. Then draw the graph of 10^,

using 37 values of x from a; = -ltoa! = +2.

(e.g. 10-A = 10T5-1 = 104 + s^-i = loix loi H- 10.)

LoGAEITHMS.

If ^ = a^, then x is said to be the logarithn of j' to base «,

the principal root being taken when x is fractional. The equa-

tion is then written x = log„^. A positive quantity is always

taken as base. At present we restrict ourselves for numerical

and graphic illustration to the case a = 10.

If we assume that the curve representing 10^ (on p. 6) is

continuous, i. e. that every line parallel to XX' [y being positive)

intersects the curve, we can at once approximate to the logarithm

of a number. Thus if ^ = 30 {OM or NP), x — 1-48 nearly

(OTlf).

In general, when x is commensurable with unity and not an

integer, _^ is incommensurable ; so that when y is commensurable,

no commensurable value of x can be found to satisfy y= 10*,

and we have as yet given no meaning to an incommensurable

index. We cannot, therefore, find exact logarithms of com-

mensurable numbers.

Practically, logarithms are used for approximate, not exact,

calculations. Thus when the tables give logju 2 = -30103, the

meaning is that lO-"'"^ ig nearer to 2 than is lo-^ow^ or lO'^""*.

Here all the indices are commensurable and their meaning has

been assigned.

The determination of the logarithm of y is then the deter-

mination of a commensurable index x, such that 10* differs from

y by a quantity which is negligible in calculation.
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Laws of IiOgarithms.

If 'oga.^'i = «^i
aiid log„y, = a-a, then a^' = j'j, a^^ = y^.

•' ^1 X^2 = a"^"''"'. (Rule (i), p. 2.)

• lOga 7] yg = Xj + Xj = loga Ji + lOga 7f • (i)

Again ^j h-^j = a'^'-'^a. (Rule (ii), p. 4.)

•• loga— = Xi-X2 = loga yi- loga ys- • (")
y2

Again ^j'" = a™^i, where m is commensurable, the principal

values being taken. (Rule (iii), p. 4.)

•• loga yi" = mxi= m loga yj. • • (i")

If logg h = u, and logj c = v, then a^ = h and S" = c.

.-. a"" = l/'o = c.

. . loga C = UV = loga b X logb C. . . . (iv)

In particular, if c = a, log„ i x logj a = log^j a = 1

.

Laws (i), (ii), and (iii) enable us, with the help of tables of

logarithms, to replace the processes of multiplication, division,

and root-extraction or raising to a power, by the easier and more

rapid processes of addition, subtraction, and division or multi-

plication respectively. Law (iv) enables us to change from one

base i to another base a, by multiplying the logarithms by

a constant factor log„ fi.

Approximate Calculation of Logarithms.

Logarithmic tables have actually been calculated by the methods of

more advanced algebra (see p. 127 below). The following approxima-

tions are given to illustrate the laws of logarithms, and to facilitate

comprehension of the tables.

By actual multiplication it can be shown that 2^^ is less than 10^'.*

•" '°gio 2 is less than if, less than -3016.

It can also be shown that 2^'^ is greater than 10^'.

.•. logjo 2 is greater than -^-^-g, greater than -30102.

Hence logjQ 2 = -301 approx.

* 221 = 1048576 < 105 x 10* ; 2™ = (g^")' < 116 x 10i«.
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Again, 3^^ is less than 2* x 10'.

.'. 13 log 3 is less than 4 log 2 + 5 log 10. (Laws (i) and (iii).)

Hence log 3* is less than ^ (1-2064+ 5), less than -4775.

Again, 3^1 is greater than 10^", and log 3 is greater than -4761.

Hence logjQ 3 = -477 approx.

By Law (i) log 6 = log 2 + log 3 = -778 approx.

By Law (iii) log 4 = 2 log 2 = -602, and log 8 = 3 log 2 = -903

approx.

By Law (ii) log 5 = log 10 — log 2 = 1 — -301 = -699 approx.

By Law (iii) log 9 = 2 log 3 = -954 approx.

We can now write down the logarithms of all integers whose prime

factors are 2, 3, and 5. We can also approximate to other primes as

we come to them.

The reader is left to show the correctness of the following tahle and

to approximate to the numbers not filled in. The results should be

compared with the graph on p. 6.

umbers.



10 SECTION I. ALGEBRA

The decimal part of a logarithm (called its mantissa) depends only

on the sequence of the digits in the number, e.g. log 3763, log 37-63,

log -3763 have the same mantissa, -5755; their characteristics are 3,

1, and - 1.

Only the mantissae are given in the tables.

The following examples show howsimple calculations are carried out:

1. Multiply 37-63 by -4752

log 37-63 = 1-5755 from the tables.

_ (Compare with the graph, p. 6.)

log -4752 = 1-6769 from the tables,

log (product) = sum of logs of factors = 1-2524 = log 17-88.

Product is 17-88 (nearly).

2. Evaluate v^4-785 x ^-347 4- -v/-05823.

A log 4-785 = i of -6799 = -1360

^ log -347 = A
( _ 3 + 2-5403) = T-1801

Sum= 1

flog -05823 = i(-2 + -7651) = T

Difference = 1

Ee.>!ult -858.

3161

3825

9336 = log -8582.

3. log83-78"-i-^ = 12-13 log 83-78 = 1-9231 x 12-13

= 23-33 = log 2-1 + 23.

Expression = 2-1 x 10^^ approx.

Only continual practice can make logarithmic computation safe.

Great care is needed in considering to how many figures the answer

can be stated accurately with the particular tables used.

Examples.

1. Given log 2 and log 3, write down log 120, log 125, and log 128.

Hence find approximately log 121 and log 11, and hence log 22,

log 33....

2. Find approximate values of log 13 from log 168, of log 17 from

log 288 and log 300, and of log 19 from log 360.

3. From the results of the previous examples, complete the three-

figure table of logarithms from log 1 to log 100, and compare with

the graph and with the printed tables.

4. Findlog3 4, log^lO, ]ogfl2.

[logs 4 = logio 4 -r logio 3. Rule (iv).]
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5. If P is the present value of G due in n years at r per cent.

interest, C=Px(l + ) •
'

^ 100/

Use logarithms to find in what time a sum of money is douhled hy

compound interest at 4 per cent.

Find the present value of £478 10s. due in 6 years at 5 per cent.

6. Given that 1 inch = 2-540 centimetres, find the number of

acres in a hectare. [1 acre = 4840 sq. yards, 1 hectare = 10* sq.

metres.]

7. Given that 1 lb. = 453-6 grammes, find the number of kilo-

grams in a ton.

iNEqUALITIES.

The sign ^t means not equal to,

> „ greater than,

> „ not greater than, i.e. equal to or less than,

< „ less than,

•< „ not less than, i. e. equal to or greater than.

Algebraic quantities are either real, imaginary, or complex.

The follovying examples of inequalities apply only to real

quantities, for which the fundamental statement is a;^ < for all

values of «.

The nature of imaginary and complex quantities is discussed

below (Section VIII).

An inequality is a relation between real quantities involving

any of the signs at the head of this section. Consideration

shows at once that '\i a <h, then a + c < l-\-c, whether c is

positive or negative ; in particular a~h < h— b.

< 0.

Similarly with any of the other signs.

Thus a quantity can be taken across to the other side of

an inequality by changing its sign, just as in the case of

equations.

Hence if a < b, then —h< —a, and — a > ~b.

Also if c is a positive quantity, ca < cb, since c only changes

the scale of the inequality,

.". —cb < ~ca and —ca > —cb.

Hence both sides of an inequality can be multiplied by a posi-

tive, but not by a negative, quantity without changing its sign.
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But it is evident that there must be a maximum product for

a given sum. Hence the maximum product is obtained, when

«1 = «2= ••• ^''n=^->
if

'«

and equals (-\
;

> ajfj •• ""<i^ when any of the a's are unequal,

and - > I^/fli«2 •• "•».' ^^^ principal root being taken. Q.E.D.

li a,b, c ... be positive proper fractions,

1 > (l-a)(l-b)(l-c)... >i-(a4-b + c + ...).

For {\-a){\-b) = \-a~h + ab >i-a~i-
.-. (l-a){l-b)(l~c) > {l~~^d)il-c),

since by assumption 1 — c is positive,

> (1 —a—b — c) by the first case.

Similarly, the inequality can be extended to any number of

factors.

It is evident that the product is less than 1, since each factor

is less than 1.

The symbol \x\ signifies the numerical value of a; independent

of its sign. Thus if x measured the height of the thermometer

above freezing point, x might be positive or negative ; but
|
m

j

would measure the distance from freezing point whether above

or below, and would be a number without sign.

If a;^ > a^ it follows that |a;| is greater than \a\, but unless

it is known that x is positive it does not follow that w > a.

Actually we have x^— a^ > 0,

(x + a)(x— a) > ;

.
•

. (x + a) and (x — a) are both positive or both negative.

If a is positive, the inequality is satisfied if a; > a ov x < —a.

Similarly, if (x— (x)(x— j3} > 0, where a > /3, it follows that

X > (X, or < /3, whether a and /3 are positive or negative.

Other inequalities will be proved as they are needed.

Examples.

1. Show that (cfi— b^) (a— 6) is positive, unless a = b.

2. Find for what values of x, a;^ + 3 a; is greater than 4.

3. Find the condition that (a + b) {a^ + b^) > a^+b^ ii a is positive

and b negative.
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4. If a and h are positive and a > h, show, graphically or other-

wise, that a^ > 6^ and that log a > log 6 when x is positive, and that
(ix < JK if a; is negative.

The Pkoguessions.

The u terms a, a + d, a + 2d, ... a + n—ld, where ?» is a posi-

tive integer and a and d are any quantities, are said to be in

Aritlimetical Progression.

Write I for the rfi^ term, so that I = a + n—ld.

Let S = a + (a + d) +...+ (a+n—ld), i.e. let S he the sum

of n terms.

Then writing the series backwards,

S = l+{l-d) + {l-2d) + ... + {l-^i^d}.

Adding these equations,

2;^= {a + l) + (a+l) + ... + {a + l) = n(a + l),

S =n.4(a + l) = f n(2a + n-ld),

^(a + l) is the average of the terms.

If a, m, c are in Arithmetic Progression, m is called the

Arithmetic Mean between a and c,

c— m = d = m— a;

.•. m = ^ (a + c).

The n terms a, ar, ar^, ... a;-""^, where n is a positive integer,

and a and r are any quantities, are said to be in Geometric

Progression.

Let S= a + ar + ar^ + ...+ ar'^-'^,

Then Sr = ar + ar^ + ar^+...+ ar'^'^ + ar'^

;

Subtracting, S (l—r) = a-ar"^
;

l_rn r°—

1

.•. S = a = a- —

•

1-r r-1
» " can readily be found by logarithms, when r and n are given.CO
If a, g, c are in Geometric Progression, - = r = '--

g = + '^ac is called the Geometric Mean between a and c ; it

is usually taken to be positive.
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The logarithms of terms in G. P., viz. log«, log a + log r,

logfli + 2logy, ..., are in A. P., the common difference being

log r.

The n terms yT , T— >
-7 -, > • • •

—=^ are said to be
A k-Vd &+2d jt + n-ld

in Harmonic Progression, where n is a positive integer and k and

d are any quantities.

No simple expression can be given for the sum of n terms.

If a, h, c are the first three terms,

i - i = k + d-k .^k->r'2.d-{k + d) = - - T.ha ^ ' h

c[a—h) = a[h— c),

a a — h h— a

u h — e c— h

h, satisfying this equation, is defined as the harmonic mean

between a and c.

-, 2ac
Evidently, h =

a + c

2.g^
Comparing the three means, we see that h = -^-^- , i. e.

g^ = hm.

Hence g is the geometric mean between h and m.

On diameter OB, centre M, describe a semicircle.

Take any point C on OB produced. Draw CT to touch tlie circle

at T, and TA perpendicular to the diameter, meeting it at A. Join MT.

Then CO-CM = CM- CB,

CT^ = CO . CB.

Also CT^ = CA . CM, since CT is a tangent to the circle on

diameter MT.
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Hence CM, CT, and GA are the arithmetic, geometric, and har-

monic means between GO and GB.

Also GM is greater than GT, which is greater than GA

.

In this it is assumed that all the quantities involved are positive.

Addendum. We have that the sum of the A. P.

n(n+\)
l + 2 + 3+...+n= —hr •

The sums of 1^ + 2^+ ... + n^ and \^ + 2^+ ...+n^ are also fre-

quently needed.

The first can be obtained thus

—

irfi + Zn + I = (n+ \f - (nf

S(»i-l/+3(m-l)+l = 7fi-[n-\f

3-32 + 3-3 +1 = 43-33

3-22+ 3-2 + 1 =33-23

3-12 + 3-1 + 1 = 23-13.

Adding, Z . S^+ Z . 8-^^+ \ x n = {n + \)^ - \^, where S-^, S^ are the

sums of the first n integers and of their squares.

.•. 3 /Sj + 3 .

"'^^j'" ' + w = ?i3 + 3^2 + Bra,

^ O D

_ n{n+\){2n+ 1)~
6

Similarly it can be shown from the identity 4 n3 + 6 ^2 + 4 7i + 1

= (n+l)*-9i* that 46'3 + 6/S2 + 45i + »i = (w+l)*-l, where S^ is

the sum of the cubes. After a little reduction this gives

2

= r^\ = '^

Examples.

1. Sum the series 3 + 5 + 7 + ... + 23.

2. „ „ 2 + 4 + 8 + ... + 1024

111 1

3
-^

9
*-

27 + - +
o^

places, using logarithms

3. „ „ TT + ;: + ;t^ + ••• + M^ correct to 6 decimal
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4. Find the present value of an annuity of £100, the first payment

to be made in 12 moutlis from now, the second in 24 months, and the

last in 20 years, reckoning compound interest at 4 per cent.

5. Sum the series 1* + 2* + ... + m*, and test the result when

n = 1, 2, 3, 4.

6. Show that 1x2 +2x3 + ... +n{n+ \) = Sj^ + S^ and write

down its sum.

7. Sum 1x2x3 +2x3x4 + ... +«-(ii+ l)(re+2).

8. Sum 1 xn +2(ij-1) + 3 (ji- 2) + ... +n x 1.

E.ATIO AND PrOPOKTION.

Raiio is that relation between two quantities, a and b, which

is measured by the fraction r •

Four quantities, a, i, c, d, are in projportioH if the ratio of a to

b equals that of ciod; i. e. if t = 7 > and . . ad = be.

Properties of Ratios.

Let ri = r^ ==•••= T^ = i\ so that a^ = rb^, a^ = rb^, &c.

Then
Aiai+A2a2 + ...+Anan^

^^^^^^,^ ^^^ j^,^ ^^.^ _

Aibi + A2to2+...+A„b„

titles, ^ -V-^ + j.>-^. + -+ ^,^ii^^
_

,,
A,a,^ + A,a,^ + ...

.

r^^, V + zf^V+ -) _ ..2

"^"^ IJ^TlJITTr.- A,b,' + A,b '+...

In particular, -^ = -^^ = ,
'

'^

, the positive roots

being taken. *^ '^ ^*i^ + *^^
_

A very large number of similar relations, of more or less

importance, can readily be proved.

If the ratios 7^ > -r- , ... are not equal, let ;• be the least of the

ratios, and all the letters stand for positive quantities.

Let -r- = r + d,, 7^ = r + do, &c., where all the d's are posi-

tive except one, which is zero.
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^^^^ ai + ag+... +an ^ bi{r + dj)+b^(r + d^ + ...

bi + bj + .-.+bn ^1 + ^2+...

,
b,d,+b„cL+ ... ....

='•+
bi+bi:...

>^-("^

By a similar method it can be shown that the fraction is less

than the greatest of the ratios.

fj -4- IT ft Or

Corollary. -, > n if « < *> and < 7- if a > 5, a,b and
b + x b

X being positive.

Properties of Proportionals.

-,r a c ^, a b a + b a —b„
,

If T = -, , then - = -, = T
=

; > "'om the previous
b d' c d c + d c—d

page, and a +b_o + d /...^

a-b "" c-d
' ^^"'

Also ^ + 1=^+1;~ d

a+b c+d
' ~r^'~dr'

If r = - ) i is called the mean proportional between a and c
;

clearly b^ — ac, and b is also the geometric mean.

Then (7-) = -r x - = -• From this property the ratio of a

to c is said to be the duplicate ratio of a to b.

Let a straight line OB be bisected at M, and divided at A

O M A B C

Fio. 3.

and C, so that MA . MC = Ml? ; then OB can be shown to be

the harmonic mean between OA, OC.

For write a, b, c for MA, MB, MC.

Since ac = 0', 7- = - and ^ = r
;

c b — a c— b

a + b _b — a _2b — {a + b)
_

b + c
~

c— b
~

c + b — 2b
'
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.
•

. 25, that is OB, is the harmonic mean between {a + b), that

is OA, and {b + c), that is 00 (p. 15).

Compare with this the figure on p. 15, whence it can be

shown that CB, CA, CO are also in harmonic progression, if

3IA, MB, MC are in geometric progression.

Pbkmutations and Combinations.

If there are u things, distinguishable one from another, the

number ot ways in which any number r of them can be chosen

and arranged in order is called the number of the permutations

of the n things r at a time, and is written „ P^

.

If we have r places, in order, to occupy with these things, we
can occupy the first place with any one of them, that is in any

of n ways. We have then n—l things left, with any of which

we can fill the second place. Hence we can fill the first two

places in any of mx («— 1) ways. Following out this plan, we
tave

,,Pr = n(n-l)(n-2)...(n-r + l), . . . (i)

that is r factors.

This expression may be written \ji\r, the notation meaning

the product of r successive factors, the first of which is «, and of

the others each is 1 less than the preceding,whether n is integral

or not.

If II factors are taken, u being a positive integer,

[n'\n = n{n-\) ... 3.2.1,

and this is written 1m, printed n ! and read as ' factorial u '.

We have then „Py = [«],. and „P„ = n !

„P„ is of course the number of ways in which u different

things can be an-anged in order, all being included.

Notice that [m]^ =
{ii-ry.

'

,„, „ „ ^ 8.7.6.5.4.3.2.1 8! 8!
e.g. (8)3 = 8.7.6 =

5.4.3.2.1 5! (8-3)!

If we are only concerned with the things which are chosen,

and not with their order, the number of different groups, each

containing r things, which can be chosen out of u distinguish-

able things is called the number of combinations of the n things

r at a time and is written .„Cy.
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"When all possible different groups of r things have been

chosen in succession and each has been arranged within itself in

all possible ways, we have made all the possible permutations of

the H things r at a time, and no permutation has been taken

more than once.

Biat the number of groups is „C, , each can be aiTanged in ,. P^

ways, and therefore ^C^ 'X-r-^r different arrangements can be made.

C< -ii p — p
• • n^r ^ r r — n r

_[n],_ n(n-l)(n-2)...(n-r + l) _ n!
• " "~ r! ~ r(r-l)...2.1 ~ (n-r)! rj

^^'

The argument can be readily followed by considering four things,

a, b, c, d, taken three at a time. Here 3P3 = 6, ^P^ = 24, 4C3 = 4.

6 Permutations.

(abc, acb, hac, bca, cab, cba

bed, bdc, cbd, cdb, dbc, deb4

Combinations
'

' ' ' ' , 6x4 permutations in all.

cda, cad, dca, aac, aca, aac

dah, dba, adb, ahd, bda, lad

If r things are chosen (« — ?) things are left. Hence the

number of groups n things r at a time that can be chosen

equals the number of things « — r at a time that can be left.

n n
• • nyr — n^n-r'

Define ^Cg as 1, corresponding to the one way in which all

can be left, and take ! to be 1 , since we should have

1 - r - "' _ «' ^ 1

" („_o)! 0! «! 0! 0!

if the formula is to be unchanged when r = 0.

We have then such tables as

6^4 = 6^1 =
J
= 5.
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These can easily be generalized for odd and for even values

of n.

The formula nCr + „Cr_i = n+lCr

is so important that two proofs are given.

_ («+l)M,, i _ [n+\\ _-
;rj - ^Tj n+i'-r-

(2) Let there be w + 1 things. Place one, A, by itself, and

the rest, n, in a group.

Consider in how many ways r can be chosen.

All the r can be taken from the group ; that is, „C^ choices

can be made, none of which include A.

Or A can be included and the remaining r— 1 chosen from the

group in „(7y_i ways.

But the choice must either exclude or include A.

As a special case, „^.^C^ — /\ + ^C^.

By means of this formula we can construct the following

table, which can readily be extended.

Sum of

lines.

2 = 2'

4 = 22

8 = 23

.16 = 2*

32 = 25

64 = 2«
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BiNOMiAT. Theorem.—Positive Integhaf, Index.

From the last paragraph we can at once proceed to the first

case of the Binomial Theorem, which expresses {a + »)" as the

sum of terms of ascending powers of x.

The ease now taken is when n is a positive integer, a and x

being any algebraic quantities.

Vi e obtain the expression required by multiplying a+x hy

a + x again and again, and showing that the resulting coeffi-

cients are formed by the same rule as that which gives the

values of „C^ as in the table on p. 21.

Thns{a + a})^ = a^ + Sa^ w + 30X^ + 01^ (a)

Multiply by (a + x)

a + so

a'^ + 3a^x+Za^x^ + ax^

a^x + 3 a^ x^ + 3 ax^ + .r*

(fl + xy = a* + (3 4- 1 ) «^a; + (3 + 3) a^x^ + (1 + 3) ««' + «*

= a^ + ia^x + Q(i^x^ + 4tax'^ + x'^ . . . . (/3)

Multiply by {a + x)

a +

{a + a;)» = «» + (4 4_ 1^1* ^ + (g + 4) irx^ + (4 + 6) a^ x^

+ (1+4) ax^ + x^

= a^ + 5a*^x+\0(flx^+\Qu^x^ + 5ax*' + x^ . (y)

Now compare the lines (a), (/3), (y) with the lines for n = 3,

4, 5 in the table for „<?,, and it is seen that the coefficients of

the various terms are formed by the same rule as is used for

obtaining the numbers in the table ; viz. that each coefficient is

given by the sum of the coefficient written above it in the

previous line and of the coefficient next before it. Also the

coefficients in (a), 1, 3, 3, 1 are the numbers when n = 3.

Hence the coefficients in the expansions of successive powers

of (a + x) are the numbers given in the successive lines in the

table.

Hence the coefficient of the r+l"» term in the expansion of
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(« + «)" is the r+ 1* number in the «**" line, that is „C^, that is

Wr
7'!

The process of multiplication shows that there are ti+1 terms

in the expansion of {a + «)", and that the indices of a fall from

n to 0, while those of x rise from to n.

Hence

(a + x)° = a° + n.a"-'x +
'^^'^~ \"-^xH...

n(n-l)(n-2) ... (n-r + l) „ , , „ , „

1. 2 .3 ,..r

'^r = o (n-r)! r!

n being a positive integer.

The last written symbol means that for r we are to write in

succession r = 0, 1, 2, ... «, and that the resulting terms are to

be summed,

, ^; a"""'' a*" is called the general term of the expression.
[n — r)\ r\

As an example notice that if a = k = 1 , we have

hence the results in the last column of the table on p. 21.

This may also be obtained as follows : If there are n things at

choice, we may take in „Cq ways, or 1 in ^0-^ ways, or 2 in ^C^

ways, &c., i.e. deal with them in „C'o + „Ci+ ... +„C„ ways. We
may also take or leave the first (2 ways), then take or leave the second

(2x2 ways of dealing with the first two), and so on. Hence 2" and

„Cq + „C'j+ ... +„C„ must be different ways of expressing the same

number.

Before dealing with the Binomial Theorem when n is not a positive

integer, we have to take the theory of limits.

Apart from their use for the Binomial Theorem here and on p. 115,

Permutations and Combinations are mainly important in the theories

of Chance and Probability, subjects of great importance in Statistics,

but beyond the scope of this book.
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Examples.

1. How many numbers can be formed from the digits 4, 6, 6, 7,

using all or any, but none more than once in one number ]

2. How many different signals can be made by altering the order

of 8 distinctive flags 1 How many flags are necessary for expressing

all the letters of the alphabet in this manner 1

3. Find approximately (l-Ol)^ and (103)^

[E.g. ll*=10Ml + n^)*
= 10^(1 + 4 X 10-1 + c X 10-2 + 4 X 10-3 + 1 X 10-*)

= 1-4641 X 10*].

4. Expand, that is, express as a sum of terms, (x j
•

2\12
5. Write down the general term and the lOtli term of ( k^ + -

j •
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GEOMETRY

Similar Plane Figures.

It is assumed that the length of a straight line is capable of

measurement, and can be expressed by a symbol, which can be

manipulated by algebraic rules.

We shall deal with the ratio of lines, and the difficulty will

at once arise that we cannot assume that the ratio can be

expressed in the form — where p and q are positive integers,

unless the lengths are constructed to be respectively p and q

times some unit length. The ratio of the diagonal of a square

to its side is -/2 : 1, and no exact common submultiple can be

found of these lines.

Quantities which cannot be expressed exactly as multiples of

the same unit are said to be incommensurable with each other.

A number, such as ^/2, which cannot be exactly expressed as

a multiple of or fraction of unity, is said to be incommensurable

with unity.

Incommensurables can always be placed as intermediate

between two commensurablea. Thus (l-41422j2>2 >(1-41421)2 ;

-\/2 is thus between 1-41421 and 1-41422 and is said then to be

evaluated. Mathematical tables in general contain evaluations

of incommensurables. The diagonal of a metre square, measured

'correctly to a millimetre ' is 1-414 m. The presence of incom-

mensurability causes no difficulty in practical measurement.

In dealing with such quantities, and later in the theory of

limits (pp. 98 seq.), we shall need the following axiom:

Numerical quantities are equal to one another, if it can be shown

that they differ Ijy less than the smallest quantity we can assign.

E.g. the difference between 1 and -9 is less than -000 ... 01,
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i.e. less than —^, where n is as great an integer as we can

name. If we assign 10"^° (or any other such quantity), 1 and

• 9 differ by less than it. The axiom then states that 1 = -9.

Proposition I. The ratio of areas of triangles of equal altitude

equals the ratio of their bases.

Let ABC, BEF have equal altitudes, and let the base J)E be

greater than the base AB.

B D L| La L„.|G LmELm+i

Fig. 4.

From DE cut o& I)G equal to AB, and join FG.

Then the areas BGF, ABC are equal.

Suppose BG divided into any number, ii, of equal parts, EL-^,

i/ji/g, ... 2/„_i G. Prom GE produced cut off successive inter-

vals GBj^^^, .Z/„+ii„+2, ..., each equal to BL^. Let E fall

either at the point L^ or between the points i^ and L^+i-

Join L^, L^,...Ijj^+i to F. Then all the triangles FBL-^^,

FL-yL^..., FLji_.^G, ... FL^^iL^^.^ are equal in area. Call the

area of any one of them a.

The area of BGF is « x n, and that of BEF is equal to a x w,

or between axm and ax{m-\- 1).

Area BEF_ Area BEF_ ma _ w
Area ABC ~ Area BGF~ 'na~ n'

or IS between — and ;

11 11

, BE BE BE, X ra m . , ,
m , «? +

1

and -r^ = ^jtt; = TTT^ = — ' or IS between — and
AB BG BLy xn 11 n n

But by taking n sufficiently large we can make the difference



SIMILAR PLANE FIGURES 27

f/i W2 -}-

1

1

between — and , i. e. - , less than any quantity that can be

assigned, without affecting the argument.

Then the ratio of the areas of the triangles and the ratio of

their bases, SE and AB, differ from — , and therefore from each
«

other, by less than any quantity that can be assigned.

.•. by the axiom on p. 25 the ratio of the areas equals the

ratio of the bases. Q. E. D.

Proposition II. If a number of parallel lines, AA', BB' , CC,
meet one straight line at A, B,

C, ... , and atiot/ier at A', B',

C',...,tJien

AB _ BC _ CI) _
A'
£' ~ WC' ~ CHf

If the lines AB and A'D are

parallel, each ratio equals 1.

If the lines are not parallel,

let them meet at 0.

Join A'B, AB'.

AO Area. AOA'
Then

AB Area ABA'

, -_ -, Area AOA'
^y^''^-^=

Are^AB'A"

since the triangles ABA', AB'A'

are between the same parallels,

AB _ AV'
A'B'" A'O

_ OA + AB_ ... _aB
~ OA' + A'B' ^P- ^^~ OB''

Fio. 5.

Similarly, it can be shown that ^5779 — 77^7

AB
•'

A'B''

BC
B'C
BC

''

B'C

'

0B_

OB''

Q. E. D.
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Similarly,
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B'C'~ C'll"

The ease where is between two of the points concerned (as

B and E in the figure) is left to the student.

AB AO
Conversely, if -yjr, = -wj:, the lines AA' and BB' are parallel.

It does not follow that, if -irrp = -577^, without further data,

the lines AA', BB', CC are parallel.

Definition. Two friangles, ABC, A'B'C, are said to he similar

if AA=. LA', LB = I B', and consequently IC = iC.

Proposition III. If ABC, A'B'C are similar triangles, so that

LA= LA', LB= LB', and LC = L C, then sJiall

'

AB _ BC _ CA
A'B' ~ B'C ~ CA'

'

ItAC = A'C, the triangles are equal in all respects and each

ratio is unity.

Let AC > A'C. Apply A'B'C to ABC so that A' lies on

A and A'C along AC, and let G be the point where C lies.

Then A'B' will lie along AB, since LA' = LA. Let B lie

at/".
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Then AFG equals A'B'C in all respects.

Z AFG - IB' =^ IB hy hypothesis.

.-. i''6'is parallel to BC.

AC
• A'C'~ AG~ Al'

AC AJ> ,„ ,-T\ ^J^
,-^(Prop.II) = ^,-g,-

/fC RC
Similarly, ^7;^, = -™^, (by applying the point 6" to C).

^^ ^'^ Q.E.D.
PiioposiTiON IV. If in two triangles ABC, A'B'C,

^^ ^(^ 1 / ^ / A'j^=-^,^ndlA=lA,

the triangles are similar.

For apply B'A'C to BAC as in Prop. Ill,

AB A'B' ... ,, . , AF

.
•

. F'G and BC are parallel.

.-. IABC= I AFG (Prop. II) = L A'B'C (by construction).

Similarly, Z^CB = lA'CB'.
.•. the triangles are similar (Definition). Q .E. D.

Fig. 7.

Proposition V. 7/ in two triangles, ABC, A'B'C,

AB _ BC _ CA
A'B'~ B'C'~ C'A''

the triangles are similar. (Converse to Prop. III).

At A, C in AC on the opposite side to B make the angles

CAD, ACB equal respectively to LA' and LC'

.
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Then ACD and A'C/B' are similar.

.•. AD = AB.

Similarly, CD = C^.

.•. the triangles ABC, ACD have equal angles (Eucl. i. 8).

,
•

. Z BAG = Z CAB = Z i5'J'C' (by construction),

and Z ^CJ = Z ^CiJ = Z B'CW.
.

•
. ^5C and A'B'C are similar triangles.

Note. Relation between equality of triangles and similarity of

triangles.

Name the angles of a triangle A, B, C, and the sides opposite to

them a, h, c.

(i) All triangles constructed with given C, a, and b are equal in all

respects.

All triangles constructed with given G and given ratio a : b are

similar (Prop. IV).

(ii) All triangles constructed with given A, B (and .•. C) and a are

equal in all respects.

All triangles constructed with given A, B (and .. G) are similar

(Definition).

(iii) All triangles constructed with given a, b, c are equal in all

respects.

g AH triangles constructed with given ratios

a:b: c are similar (Prop. V).

(iv) If a, b, A are given, the triangles

^ jy p, which can he constructed are equal to one

„ , a or other of two triangles as ABC, or ACS'.

The corresponding case is, if A and the

ratio a : 6 are given, triangles are similar to one or other of two

triangles.

The proof is left to the student.

The numerators AB, BC, CA in (e. g.) Prop. V are said to be

homologous or corresponding with the denominators A!B', B'C

,

G'A' respectively.

If r is the common ratio, each line equals its homologue nmlti-
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plied by r ; ; may be called the linear magnification,

does not imply that r is always > 1.

31

This

Piioi'osiTiON VI. T/ie ratio of the areas of two similar triangles

ABC, A'B'C is equal to the square of the ratio of any pair of

their corresponditig sides, that is to r^, where r is the linear magui-

fication.

Draw BM, B'M' perpendicular to AC, A'C.

The area of a triangle is numerically equal to half the product

of the numbers measuring its base and altitude.

Since LA=. LA' (by hypothesis), and IAMB= lA'M'B'
(by construction), ABM and A'B'M' are similar (Definition).

BM AB _
Zb' ~

'

.BM AC_ BM
A'C ' B'M'

'

.2 (BC_^
ys'c'^

'

sides, ABGB ...

:', Z5= LB'...,

• WW
kxt&ABC _ .\AC.

Area AlB'C ~ iA'C". B'M'
^

= rxr = r
^A'CJ \A'B'^

Definition. Two plane polygons, each of i

A'B'C'B' . . . are said to he similar if LA = L.

and AB : A'B' = BC: B'C = CD : C'B'. . .

.

The following construction shows that if n— 2 angles in the

one equal respectively n — 2 angles in the other, and if the

ratios of «— 1 pairs of corresponding sides are equal, then

the remaining angles in the one equal respectively the remaining
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angles in the other, and the ratio of the remaining pairs of sides

equals the ratio of any other corresponding pair.

Let ABCBE be any polygon (taken as five-sided for

illustration).

A' B'
Draw a line A'B', and let

AB
At B' make an angle A'B'C equal to Z B, and cut off

B'C = rBC.

Fig. 11.

At C make Z B'Cfl/ = IC, and C'l)' =r.CI).

At 1/ make Z CD'S' = LB, and I/E' = /

.

BE.

Join A'E'.

In our construction we have taken 4, (5— 1, ;t — 1), ratios equal

in the two figures and 3, (5 — 2, «— 2), angles equal.
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We have now to show that LT<'/ — IE, LA'=LA, and

E'A' = r . HA.

Join AC, A'C. By Prop. IV, ABC and A'B'Cf are similar,

and . •. Z ACB = L A'C'B' and A'C = r.AC.

But Z BCD = Z B'C'D' ; .
•

. by subtraction lACJ)^ I A'C'B'.

B'C C'A'
Also -j-r^ — -j^ = r. .

•
. the triangles ACB and A'C'B' are

similar (Prop. IV).

-
•
. A'l/ = r . AB. Also IA1)C= L A'B'C, and their differ-

ences from the equal angles CBE, C'L'E', namely /.ABE and

Z A'l/E', are equal.

But I/E'^r.BE. .-. the triangles ABE, and A'B'E' are

similar (Prop. IV).

. •. EA = r. E'A',IA'E'B'= I ABB, and LB'A'E' = IBAE.
Looking again at the triangles ABC, ACT), AEB and those

similar to them, we have

Z E'A'B' = Z B'A'C + Z CA'I/± Z i^'^'^'

= Z 54C' + Z CAB ± Z i)J^ = Z ^Ji'.

It is left as an exercise to show that the proof applies to poly-

gons with any number of sides, and (with proper choice of signs)

to any shape, re-entrant or not.

It should now be obvious that any line joining two angular

points in the one polygon equals r times the line joining the

corresponding points in the other.

Peoposition VII. The ratio of the areas of two similar poly-

gons is equal to the square of the ratio of corresponding sides.

For the area ABCBIS = area {ABC +ACB± ABE)
= r^ X area (A'B'C + A'CB'± A'B'E')

(Prop. VJ)
^r^x&i-e&A'B'CB'E'.

Similarly with polygons of any number of sides.

Similar plane figures are now seen to be like in shape, but

differing in size. Any line in one equals the corresponding line

1**5 D
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in the other multiplied by r, and any area in one equals the

corresponding area in the other multiplied by r^. r^ may be

called the areal magnification.

These statements apply equally to similar curvilinear figures,

if these are regarded as limiting forms of polygons consisting

of a great number of very small sides (see pp. 65-6). Thus

circles are all similai', the ratio of the circumference to diameter

is constant, and the areas of two circles are in the ratio of the

squares on their diameters.

These ideas can be extended to similar solids in which, if

corresponding lines are in the ratio r, corresponding areas are in

the ratio r^, and corresponding volumes in the ratio r^ ; but the

analysis is bej'ond the scope of this book.

Examples.

1. If the vertical angle 5 of a triangle ABC (where AB ^ BC) is

bisected internally and externally by lines meeting AC in D and H,

AD _AB_AE
m]~BG~GE'then

For draw CF parallel to BB to meet AB produced at F.

L BCF = L CBD (since CF and BD are parallel) = Z ABD (const.)

= ^AFG
.: BF= BC (Eucl. i. 5).

Since DB and CF are parallel, -j-^ = -^ (Prop. II) = —- •

Now draw CG parallel to BF.
L BCG = alternate angle CBE = Z EBF (const.) = internal

angle BGG.
.'. BG = BC (Eucl. i. 5).
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Since CO and BE are parallel, -^ = ^, (Prop. II) = j^ •

[Notice that AD, AG, AS are in harmonic progression. See p. 15.]

AP
Corollary. If a point P moves so that the ratio, ^-^j of its

distances from two fixed points A and C is constant, its locus is

a circle whose diameter is DE, where D and E are points in AC and

AC produced such that ^=r^ = -^-p, = -^--^ DC EC PC
AD AB

For the converse theorem, that i f jr-^ = -jt^ , then BD bisects ZABC

and, if —, = - -^ , BE bisects Z ABC externally, is easy to prove.

.. P, which now replaces B, is such that PD, PE bisect adjacent

angles ; Z DPE is a right angle and P lies on a circle whose diameter
is DE.

2. If OT is a tangent to, and GAB, OCD secants ot a circle

ATBDC, then the triangles OTA, OBT are

similar, and OAC, ODB are similar, and
hence DC .OD = OA .OB =. OT^

3. If ACB is a right angle and CN per-

pendicular to AB, then ACB, ANC, BNC
are similar triangles, and CiV^ = AN .NB,
AC^ = AN.AB, BC^ = BN .BA.

Vm. 13.

4. If three similar figures are described

on the sides of a right-angled triangle, the area of that on the

hypotenuse equals the sum of the areas on the other sides.

Let /iT^, K^, and K^ be the areas on BC, GA, AB where C is the

right angle.

/c A'„

R\ ^CA)

A'

{BC)'^' {GAf

K„ + K„

(similarly)
A' + AH

{ABf BC^ + CA^ (p. 18)

Kg + K,

Air-
(Eucl. i. 47).

5. li ABGD..., A'B'C'D' ... are similar polygons placed in one

plane so that AB, A'B' are parallel, then A A', BB' , CC, DD' ... are

concurrent.

[The figures are then said to be liomotlietic, and the point of con-

currency is called their homothetic centre^

D 2
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6. Show that the common tangents to two non-intersecting circles

pass through one or other of two points which satisfy the definition of

homothetic centres.

Definition. If ABC..., A'B'C'..., be two similar figures in

a plane, and it is possible to find a point such that

OA' _ OB' _ PC _
OA" 0B~ UC

"'
then the figures are said to have a centre of similitude 0.

7. Show that two circles have an infinite number of centres of

similitude lying on the circle described on the line joining their two

homothetic centres as diameter.

PllOJECTlON IN ONE PlaNE.

Let OA'be a fixed line, called the axis of projection.

Let A, B,C,D,... be any points, and let AK, BL, CM, UN,...

be perpendiculars on to the axis.

D

O 1

Pig. U.

Then K, L, M, N are called the projections of A, B, C, B, and

the lengths KL, LM, BIN the projections of AB, BC, CB on the

axis OX.

Now extend the meaning of the symbol AB so as to mean not

only the length AB, but the direction also, so that AB means

a displacement or step from A to B, and BA means a displace-

ment from B to A. Then AB + BA = 0, not 2 AB, and signifies

a step from A to B combined with one from B to A.
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This extended meaning involves no logical difficulty. It

affords a ready means of abbreviating and generalizing many

properties, and provides a useful connexion between geometry

and algebra. The convention that AB means a displacement

may be adopted in any theorem or group of theorems ; while the

less extended meaning can be used whenever direction is not

involved.

Using this convention we have for example that

KL + Liy+NK=0,
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and the sum of the projections of AB, BC, CA is zero.

Similarly, the sum of the jjrojections of BC, CI) — the pro-

jection of BI) ; and the sum of the projections of the sides of

a closed polygon is zero.

These statements are trae for all axes of projection.

Thus in Figure 15, where YOY' is an axis perpendicular to

XOX' , the projection of AC = sum of projections of AB, BC.

On the axis OX this becomes

K3I=KL + M/,
and on the axis OY,

ltT= BS+ST.

Notice that Oi/ = +5, 01I-+S,, OK = -5, OS = +8,

OT = - 2, OR --A in the figure,

and A'i/rr KO+OM= OM-OK= 8- (-5) = 13,

KL = Ol-OK= 5- (-5)= 10,

Lil = 031- OL = 3.

Similarly, RT = OT- OR = -2- (-4) = 2,

RS= OS-OR= 12, and ST = OT-OS= -10.

This method and notation will be used frequently in the

sequel.

Examples.

1. Show that the sum of the projections on a given axis of any

broken rectilhiear jJiith between two fixed points is constant.

2. C is the middle point of AB, and any point. Show that on

any axis the sum of the projections of OA and OB = twice the pro-

jection of 00.

3. Enunciate Euclid ii. 12 and 13 as a single proposition by

means of projection.



SECTION III

TRIGONOMETRY

The TiiiGONOMETRicAL Ratios.

I. The Case of a Positive Acute Angle.

Let cob be an acute angle. From Q, any point in 01),

draw Q,M to meet OC at right angles at /If (Fig. 16).

Then, if Q^ is any other position of Q on OD and Q' any

position on OC, and Q^Bly, Q'Bl' are perpendiculars on OC,

OB, the triangles OMQ, OM^ Q^, OM'Q', are similar.

.-. OM : MQ : QO = Oil/i : M^ Q^ 0,^.0^ OM': M'q' : Q'O,

and any ratio formed by two sides of the triangle OMQ is

independent of the position of Q.

The ratio -~^ ^^ called the sine of the angle COB.

The ratio ^r^ i® called the tangent of COB.

The ratio ~j is called the secant of COB.

[The origin of these terms is probably as follows. Using Figure 1 7,

where OP is unity, PF' measures the stretch of a bow-string where
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PAP' is tlie Low ; sinus in Latin is the fold (of a garment) in one of

its uses. {NA was formerly called the sagitta or arrow. It is also

called the versed sine of the angle.) TO is part of a secant to the

circle, TA the tangent. The ratios of TO and TA to OA, that is, to

unity, are the secant and tangent of COD as just defined.]

In Figure 16, the angle OQM is complementary to COD, and

the sine, tangent, and secant of OQM are called the cosine,

co-tangent, and co-secant of COD. Then

the ratio -^-^ is called the cosine of COD,
OQ

the ratio -jtt^ is called the co-tangent of GOD,

the ratio —f is called the cosecant of COD.

These six ratios are the trigonometrical ratios of the acute angle.

II. All Angles.

These definitions have been extended in accordance with the

process of mathematical convention, described on pp. 1, 2, to fit

the generalized idea of an angle that follows. This is done

with the use of positive and negative lengths measured on two

axes as in graphic algebra. The definitions just given are

included as particular cases.

The Angle.

Draw a line OA, horizontally from left to right, and regard

OA as of unit length. Describe a circle, centre 0, radius OA.

Let there be a movable radius, as the hand of a watch. Take

OA to be its zero position, and suppose the circumference of the

circle to be divided into 360 equal parts ; number these parts, as

in Figure 17, making the numbers increase in the opposite

direction to that in which the hands of an actual watch revolve.

An angle, ' the inclination of two straight lines to one

anothei',' is to be measured as follows: Place one arm, OC,

along OA, and let the other arm, OD, intersect the circle at P.

Turn the moving radius from OA to OP. The magnitude of

the angle is measured by the number of unit divisions of arc
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through which the radius is turned. The single subtended by

the unit division as numbered in the figure is called a degree.

90 degrees (written 90°) make a right angle.

An angle may be either positive or negative and of any

magnitude. In Figure 17 the angles COD, COB, COP^, COA',

COP^, COB', COPs are respectively 35°, 90°, 142°, 180°, 195°,

270°, and 293°. The same angles may equally be read —325°,

,D

'B^

s-fiA

Fig. 17.

-270°, —218°, -180°, -165°, -90°, and -67°. Whether

the positive or the negative measurement is to be taken depends

on the problem with which the angle is connected. Thus, if we

have a revolving wheel with a marked spoke OP which starts

from the position OA, it may arrive at OP^ either by revolving

through 142° in a contra-clockwise direction, or through 218° in

a clockwise direction. Or it may turn through any number, h,

complete revolutions and then through 142° before it stops.
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Thus the angle marked as AOP {AOP.^, &c.) may be any one of

the angles n. 360° + a;°, where x is between O" and + 360° and

H is zero or any positive or negative integer. If, for example,

M = — 8 and x = 40, we should have 8 negative revolutions

completed less 40°, and the angle would be reckoned —2840°.

In trigonometrical measurements, it is always to be supposed

that the angle is brought to this figure for measurement. This

method is closely allied to that ordinarily used in scale drawing,

when a protractor is placed on a figure with its zero reading on

one of the lines.

Mark scales on the lines Ad', BB' from + 1 to — 1 as in

Figure 17.

From every point on the circumference draw perpendiculars

to AA' and BB', as PN, PM. Then ON, OM are the projections

of OP on OA and OB. The scale measurement of ON is called

the cosine, and of OM the sine, of the angle COl).
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Then the triangles ONP, OAT are similar, and we have

, , p.,^n, , , OM NP AT
tangent oi COD (or tan x) = j-j-j = jr^ — -i— •

Since OA is of unit length, tan x = length of A2' on the

scale shown in Figure 17.

The following are the formal definitions :

The cosine of an angle COD is the projection on one arm (OC)

of unit length measured on the other (OD).

The siue of an angle COD is the projection, on a line (0^)

making a positive right angle with OC, of unit length measured

on OD.

The tangent of an angle is the ratio of the projection on OB
to that on OC.

The cotangent of an angle is the ratio of the projection on OC
to that on OB.

The secant of an angle is the ratio of unit length on OD to its

projection on OC.

The cosecant of an angle is the ratio of unit length on OD to

its projection on OB.

It is evident that the same ratios are obtained whatever unit

of length is taken, so that the ratios are functions (p. 72 below)

of the magnitude of the angle and of nothing else.

We have obviously the following relations :

sin X 1 1 1
tan X := = —-— : sec x — : cosec x =

cosx cot X cos X sin X
sin, cos, tan, cot, sec, and cosec are the abbreviations ordinarily

used.

The lengths ON, OM in Figure 17 on p. 41 may have positive

or negative values, but in all cases their squares are of course

positive, and the equation OW^ + NF^ = OF^ is satisfied in the

ordinary geometrical sense.

This may be written sin^ x + cos^ x — 1, where sin^ x is the

abbreviation for (sine x^.

By algebraic processes we have

sin X ^ ' 1 \

( ) +1—1 ) and .•. tan^x + 1 = sec'^x,
^ cos x^ ^ cos X '

/cosajs^ / 1 s^ , , ,„ „

and l + (
-.—

I — \
-. -

) and .'. 1 + cot-x = cosec' x.
^sjna;' ^^awx'
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It is easily shown by geometry that

(i) when LNOF = 45°, ON = OM, .-. sin a; = cosa;,

.•.2 sin^ a; = 1, sin 45° = -—z. = cos 45°,

V2
it being evident that the positive sign is to be taken.

Also, tan 45° = 1 = cot 45°.

(ii) when I NOP = 60°, OPA is an equilateral triangle, and

OF=i = cos60°, .-. NP'^=l-Om = l,2 4

.-. O7!/=iVP = :^ = sin60°, .-. tan 60°= ^3.
2

(iii) when Z NOP =ZQ\NP = \ = sin 30°,

ON =— = cos 30°, .-. tan 30°=~ .

2 VZ
la general, the trigonometrical ratios of «°, when x is com-

mensurable, are incommensurable ; but in the cases just given,

and in some others (see pp. 58-61) they are commensurable or

can be expressed in terms of simple surds.

Relations between the Ratios of Allied Angles.

The values, as obtained in the table on p. 42, are well exhibited

in graphic form, where the number of degrees is measured along

a horizontal axis, and the corresponding ratios marked from

a vertical scale.

It is evident from Figure 17 that

sin (90°-*°) = sin (90° +»°)

when x is between 0° and 90°. Hence the graph of the sine

from 90° to 0° [EO) is equal and similar to that from 90° to 180°

{EF). Also from the same figure

sin (270°-«°) = sin(270° + «°) = -sin (90°-*°)
;

hence the graphs from 270° to 180° (GF) and 270° to 360° ((?//)

are equal and similar to each other and to EO. Also sia« is

positive from 0° to 180°, and negative from 180° to 360°. Hence

the sine graph from 0° to 360° consists of four equal and similar

parts placed as in Figure 18. As x increases positively or
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negatively without limit this figuve is repeated again and again

to right and left.

The whole figure, supposed continued indefinitely, is sym-

metrical about vertical lines through E and through G.

ii Si LQ

.-. sin(90° + «°) = sin(90°-«°) = sin(«.360° + 90°-a;°), and

sin (270° + a;°) = sin(270°— «") for all values of x where n is any

positive or negative integer or zero.

If we write x' for (90 — «), the first of these equations becomes

sin (1 80° — a;'°) = sin x'° = sin [n . 360° + x'°) for all values of x'.

It is now easy to see that the following are true for all

values of x.

smx°= sm(180°-x°) = sin(n . 360°-|-x°)

= -sin(-x°)= -sm(180° + x°). . . (i)

If any angle x" (AOP) is taken, and its cosine ON marked,

and at the same time the angle «° + 90° (AOP') is taken, and

Fig. 20. Pig. 21.

its sine ON' marked, as in figures 20, 21, then it is evident from

the definitions of sine and cosine that the figures ANOP and

BN'OP' are equal in aU respects, that the second is obtained

by rotating the first through a positive right angle, whatever

the value of x, and that O^A^and ON' are always the same in

sign and equal in magnitude.

Hence sin (x° + 90°) = cos x° for all values of «. . . . (ii)
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The cosine graph is therefore obtained by shifting the sine

graph to the left through 90° on the horizontal scale (Figure 19).

The symmetry of the cosine graph shows that

cosx° = cos(— x°) = cos(n .
360° + x°)

= sin (90° + x°) from the previous paragraph = sin(90°— x°)

= — cos(l80° + x°).

Writing of for 90 —:r, and then omitting the accent ', we have

cos (90°— x°) = sin x° for all values of x.

Writing 90 + x^ for x, in equation (ii) above, and then omit-

ting the sufRx
J,
we have

cos (90° + x°) = sin (1 80' + a;°) — — sin x° from equation (i).

It is then easy to show by division that

—

tanx° = cot(90° — x°), eotx° = tan (90°— x°)

sec x° = cosec (90° — x°), eosec x° — see (90°— x°).

[These complementary relations are evident when « is a positive

acute angle.]

Fig. 22. Graph of tangent x.
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We have further

—

tan(».360° + a!°) = tana;°

sina;° — sin (180° + a!°)
, /,„„o o\

— cos(180 +« )

^
cosa;' — cos(180° + a;°)

= tan(«. 360°+180° + a!°);

- •. tan x° = tan (n . 180° + x°), when

negative integer, odd or even.

_ sin ( 1 80°

—

x") _ sin x

is any positive or

Also tan (180° -x°) = — tan X .

cos(180°— a;°) — cosa;"

These relations can be verified from the graph of tan*,

Figure 22.

Projective Methods.

It follows easily from the definitions of sine and cosine that if

any length I, CD, is

measured on a linewhose

positive direction makes

the angle cc with the

positive direction of an

axis OX,

the projection of CD
on OX= I cos x,

and the projection of

CD on or = I sin X,

where OJ is an axis

making a positive right

angle with OX.

This is true for all positions of CD in the plane XOY and is of

the greatest importance.

As an instructive example we will obtain some of the relations

proved in the last section by projection, using pp. 36-8.

In Figure 24 i, CD makes the angle x° and DC the angle

180° + (C°with ox.

.•. ^cosa'° + ^eos (180° + «°) = sum of projection of CD, DC
on OX = 0.

,-. cosic" = — cos(180° + a;°).

Fig. 23.
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Similarly, projecting on OF
sin«° =— siu (180° + «°)-

Fig. 24 ii.

Take a step CB in direction x", turn through a negative

angle 2x° and take an equal step DC (Fig. 24 ii). DC makes

/_—x° with OX. The second step reverses the movement parallel

to or and repeats the movement parallel to OX.

.-. I sin 0)'' + 1 sin {— ai°) = 0,

I cos so" + 1 cos (—x°} = 2 . ^cosa!°

;

.•. sin(— »°) = — sin«°, and cos (— a;°) = cosa;°.

Similarly, if we take a step in direction x and then turn
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through a positive angle 180°— 2a;° and take an equal step, we

find cosa;°+ cos(l80°— a!°) = 0, and cos(180°— a;") = — cosiB°

sina;° + sin(180°— «") = 2sina;°;

.-. sin(180°— «°) = sina;°.

The relations now obtained are very important, partly because

they are needed for using trigonometrical tables, partly because

they exhibit the nature of the periodicity of the ratios, that is,

the return of the function again and again to the same value as

X continually increases.

Using the table on p. 42 from 0° to 90° only, the following

examples show how to write down the ratios of any angles.

sin 160°= sin (180° -20°)= sin20° = +-34,

sin 200° = sin(180° + 20°) =-sin20° = -.34, ,
.^^^"^ °[ *^^

" ' ' trigonometrical
sin 320° = sin (360° — 40°) =— sin 40° =—-64, ratios in the

sin 5020° = sin (13 x 360° + 340°) = sin 340° fo^^r quadrants.

= sin (360° -20°) = -sin 20° = --34, cod-

ecs 160° = cos (180° -20°) =- cos 20°=—94, *^" "

sin +
cos +
tan +

sin —
cos +
tan —

cos 200° = COS (180° + 20°) = -cos 20° = --94, si° -
COS —

COS 320° = cos (360°- 40°) = + cos 40° = +-77, tan +
COS 5020° = cos (360°- 20°) = cos 20° = + -94,

tan 160° = -tan 20° = --36, tan 200° = +tan 20°= +-36.

It is convenient to use always the relations which involve

180°, rather than those which involve 90°.

Inverse Functions.

In such an equation as y = sin x, suppose that y is given and

X is to be found. If
| y |

* > 1 , no solution is possible.

Mark the value of y, as OE-^ or OH^, on the sine graph, p. 45.

Draw a horizontal line through H^ or H^. This will evidently

meet the graph of sin x at two points between 0° and 360°, two

more between 360° and 720° and so on.

Let a° be the smallest positive angle whose sine is y, i.e.

OL or Oij.
* This notation is explained on p. 13.
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Then we have two series of angles, viz.

OL or OL2

...-720° + a°, -360° + a°, a.°, 360 + a°, 720° + a°, ...

Oil or Oli

and ...-360°+180°-a°, ISO'-a", 360°+ 180°-a'',

720°+180°-a°, ....

These are all contained in the formula « .
180° + (— l)"a°,

where n is zero or any positive or negative integer. The formula

contains no other angles.

For if we put » = ... — 4, — 2, 0, 2, 4, ..., we get the first line,

and ,, ,, ... — 1,1,3,5,..., ,, ,, secondline.

The equation y = sin « is in such cases written x = sin~^y

(or in continental usage, x = arc sin y) ; these statements are

simply abbreviations for 'x is any angle whose sine is^'.

The solution obtained is a;" = m . 180° + (— l)"a°, where a° is

an angle between 0° and 360°.

Similar analysis shows that the solutions oi x — cos~' y are

x' — ?«.360° + a°,

and of « = tan"^y is x° = ti . 1%Q° + oC

,

where a° is the least positive angle satisfying the equation.

Mensuration involving the ratios of one angle.

Let AB be a chord of circle, radius B, and OA a diameter.

Let Z AOB — a°. Take C, Cf on the circle on opposite sides

of AB, C being in the

greater segment. Cut

off unit length, OP,

from OA, and draw FN
perpendicular to OB.

Then ZACB=:(x°,

lAC'Bz^ 180°-a°.

smACB=r sinACB
NP
~0P

_BA_BA
" 0A~JE'
.-. AB= 2i2sina°,

where a." is the angle
(acute or obtuse) subtended by AB at any point of the circle.

E 2

sin a —

Fio. 25.
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Now consider ABC as any triangle inscribed in the circle.

Let A, B, C stand for the numbers of degrees in the angles, and

a, b, c for the number of units of lengths of the sides BC,

CA, AB.

Then the lengths a, b, c subtend the angles A, B, C, and we have

a b ^ = 2B,
Bin A sin B sin C

where R is the radius of the circumscribed circle.

(i)

Then sin A =

Fia. 26.

Let A be the area of the

triangle. Choose an acute

angle, say A.

Draw BM perpendicular to

AC.

MB
AB'

A=^ACx MB, by elementary
mensuration,

= ^ACxABsai.A

ii- • A
"^'^= * be Bin A = -^

= I ac sin B = ^ ab sin C

J „ abc
and E = •

4A

Now regai'd AC as an axis, measured to the right from A. It

is easily seen that the directions AB, BC make angles A and

- (7 with Ja
Since the sum of the projections of AB, BC on AC is equal

UiAC, AB cos A + BC cos {-C) = AC;

.•. ccosA + acosC = b, since cos (— (7) = cos C;

.•. ccosA = b— aeosC.

But we have csin A = a sin C.
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Squaring and adding,

c2 (cos^J + sin^J) = (52- 2 «5 cos C+ a^ cos^ C+ a^ sin^ C

;

.-. c^ = a2 + b2-2abcosC.
Similarly, a^ = b^ + c^ — 2bccos A, • . . . (ii)

b^ = c^ + a^— 2 ca cos B.

No assumption has been made in these proofs that the angles

are acute, and the results are true for all triangles, acute-angled,

right-angled, or obtuse-angled.

Solution of triangles, without logarithms^ assuming the use

of tables of sine and cosine. (Compare p. 30 above and

pp. 62-3 below.)

I. Given two sides (a, b) and the contained angle (C).

c is found from the first of equations (ii).

cos B, and hence JB, is found from the second. There is only

one value of i? between and 180 with a given cosine, hence

the solution is unique.

Then^ = 180-5-C.

II. Given three sides.

cos A, cos B, cos C, and hence A, B, C, are found from equa-

tions (ii).

III. Given two angles (and therefore the third, since A + B + C
= 180) and one side (a).

From equations (i) i and c are found by writing in the value

of the sines.

IV. Given two sides (a, b) and an opposite angle A.

From equations (i), sin 5 = - sin A. b sin A is the altitude of

the triangle, if c is taken as the base.

Ji a < b sin A, there is no solution.

Ii a = bsmA, B = 90, C = 90 -^, and 0^ = 0^ + h"^.

\i a > b sin A, there are two values for B, supplementary

to each other, which satisfy the equation. Taking either of

these, C— 180 — A — B, and c is then obtained from equations (i).

In this case it can be seen from a figure that ii a < b both

solutions are admissible, and if a < i only one solution.
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neigbts and Distances.

If CD is a vertical post, and A and B two points such that

Q ABC is a straight line and

the Z ACD a right angle,

then if AB and the angles

I)AC,DBC{the 'elevations

'

of I) as seen from A and

B) are measured, CD can

be found.

'LetlI)AC=a, I BBC
= /3.

Then AB = AC-BC= CBcotoc-CJ) cot /3

;

..cn= ^^ *
cot a — cot ;8

If the elevations of two points C

and I) in a vertical line are measured,

and the perpendicular distance of A
from CD (= AB) is known, then CB
can be found.

For CB ^BB-BC
= AB tan a-AB tan /3.*

FiQ. 28.

Fig. 29.

If C and B are given points, and

length CB is known, then the distance

of an object A can be found if the

angles ACB, ABC are measured.

This is Case II of the solution of

triangles.

When b is found the perpendicular

distance of A from BC, which equals

6 sin C, is known.

^Bsin a sin (3 ^CD = —^

—

——r:^ (see p. 57),
sin (0 — a)

which is adapted to logarithmic computation.

ABsm{Oi-P)
In the next case CD =

cos 0( cos $
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Examples.

1

.

Show that sin* x + cos* as = 1 - 2 sin^ x . cos^ x, from the formulae
on p. 43.

2. Show that sec^ x + cosec^ x = sec^ x . cosec^ x.

o oi, ii_ i 1 + sin X cos X
3. Show that = .

cos X 1 — sin X

4. Solve the equations

(i) 2 sin a; =1. (ii) ^2 . cos 2a; = 1.

(iii) tan3a;= 3. (iv) 2cota; = 1.

[tan 3a;° = 3 = tan 72° to the nearest degree, from the tables

;

.-. 3a;° = m.l80° + 72°, a;° = re.60° + 24° a;°=...-96°, -36°,
24°, 84°....]

Check the solutions by drawing the graphs of sin x, cos 2x, tan Zx,
cot a;.

5. Find the other angles, and sides, and the area of the triangle,

when
(i) a = 41, 5 = 37, c = 18.

(ii) ^ = 27, 6 = 53, c = 25,

(iii) A = 5Z,B = 100, c = 10.

(iv) i = 25, c = 4, a = 3.

Check the results by drawings to scale.

6. Show by projecting the perimeter of a regular pentagon on to

one of its sides that cos 72° + cos 144° + A = 0.

7. The angle of depression of the foot of a vertical cliff at an
observer's eye, distant 220 yds. from the cliff, is 2-1° and the angle of

elevation of the top is 12°. Show that the cliff is 56-4 yds. high, and
that the foot of the cliff is 9-6 yds. below the observer's eye.

8. A passenger in a train travelling along a straight railroad

observes that a building whose perpendicular distance from the road is

1J miles appears to lie about 25°, and, in 48 seconds, about 35° to his

right. Show that the train is travelling at about 45 miles per hour.

9. A telegraph post, standing vertically on flat ground, is

strengthened by two guy ropes, both fastened to the top of the post

and in the same vertical plane. If they are inclined to the horizontal

at angles of 47° and 62° and enter the ground 14 ft. apart, show that

the post is 35 ft. high, and find the length of each rope.
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The Trigonometrical Eatios of the Sum of two Angles.

Let a° and /3° be any two angles, positive or negative.

Let a° be A OP, measured as before from an initial line OA,

so that its cosine and sine are the projections of OP on A'A,

B'B, where ABA'B' is a circle of unit radius.

Take OP as the initial line from which to measure y9°, and let

POQ be the angle /3°. Q, may be anywhere on the circle.

Let POC be a positive right angle. Produce POand CO to

meet the circle again at P', C.

Then the cosine and sine of /3° are the projections of OQ on

V'P, C'C.

Draw Q,M, QN perpendicular to OC, OP. M may be any-

where from C to C, and N anywhere from P' to P.

The projection of OQ on any line equals the sum of the pro-

jections of ON, NQ, that is of ON, OM, for all positions (p. 37).

OQ, makes Z a° + /3° with OA ; ON, the axis on which cos ^ is

measured, makes Za° with OA ; and OM, the axis on which sin /3

is measured, makes Z (a° + 90°) with OA.
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.-. the projections of these lengths on OA are OQ cos (oc+fi),

ON cos a, and 031 cos (a + 90), (p. 48)

;

and the projections of these lengths on OB are OQ sin {oc + l3),

ON sin a, and OMsin (a + 90).

.-. OQ cos {(x + 13) = OiV^cosa+O7l!fcos(o( + 90).

and OQ sin (a + /3) = ON sin a + OMsin (a + 90).

But OQ is unity, ON = cos/3, OM = sin/3,

cos (a + 90) = — sin a, and sin (a + 90) = cos (x (p. 46).

.-. cos(a + p) = cos/3cosa— sin/3sina_

= cos a . cos P— sin a . sin P . . (A)

and sin (a + P) = cos ;3 sin a + sin /3 cos a

= sino .cos P + cosa.sin P . . (B)

These results are proved for all values of a and /3.

If /3 is negative it is convenient to write /3 = — ^', where ^'

is positive.

The first equation becomes

cos (a— /3') = cos a cos (— /3') — sin a sin (— /3')

= cos a cos /3' + sin a sin /3'.

But since y3' is any angle we may just as well write

cos (a— p) = cos a cos P + sino sin p. . . . (C)

Similarly, sin (a— P) = sin a cos P — cos a sin p. . . . (D)

Adding the identities (A) and (C) we have

2 cos a cos P = cos (a + P) + COS (a— P).

Subtracting (A) from (C)

2 sin a Bin p = cos (a— p) — cos (a + P).

Similarly from (B) and (D)

2 sin a cos P = sin (a + P) + sin (a— P)

2 sin p cos a = sin (o + P) — sin (« — P).

Now write y for (a + /3) and 8 for (a— /3), so that oc = |(y + <

y3 = 4(y-8)-

The equations last written become

cosY + cosS = 2cos|(y+8)cos^(y— 8)
'

cos 8 — cos y = 2 sin ^ (y + 8) sin ^ (y— 8)

sin Y + sin 8 = 2 sin f (y + 8) cos |(y— 8)

sin Y— sin 8 = 2 sin i (y— 8) cos ^ (y + 8)
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These equations are true for all values of y and 6. They are

of use in processes of trigonometrical computation.

Returning to equations (A) and (B), take the particular case

where /3 = a.

(A) becomes cos 2 a = cos a . cos a— sin a sin ex.

= eos^ a — sin^ a = 1— sin^ a— sin^ a

= l-2sm2a =2cos2a-l. . . (E)

(B) becomes sin 2 a = 2 sin a cos a (F)

Writing x for 2 a, (E) becomes

cos a; =1 — 2 sin^^a; = 2 cos^-|«— 1 ;

.•. sin(^x) = + •/|(1— cosx),

cos (t ^) = ± "v^i (l + cos x).

•.tan(|x)= + ^^
I — cosx

(G)

. + C0SX

Where a; is between 0° and 180° the ratios of ^ (x) are positive,

and the upper signs are to be taken. If we only know cos a; and

nothing else as to the value of a; both signs are admissible.

Ti / A \ T /T>s i / ^\ sin a cos a + cos a sin S
From (A) and (B), tan (tx + B) — -. r-^ •

^ ' ^ <-' cos a cos /3— sin asm ;9

Divide every term in the fraction by cos a . cos^, and we have

tan a + tan (3

tan (a + p)

;

tan 2 a =

1 — tanatanP

'

2 tan a

Similarly, tan(a— P) =

1—tan^a

tan a— tan p

1 + tana tan

p

(H)

As examples of the use of these formulae we will find the ratios of

certain angles.

In (A) and (B) let a = 45°, /3 = 30°,

cos 75° = cos (45° + 30°) = cos 45° cos 30° - sin 45° sin 30°

L ^_ ^ ^ _ ^3-1

since 15° and 75° are complementary.

2 -/2
= sin 15°,
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Similarly, sin 75 = —=; • - + —- — = ;^ = cos 1 5°.

1

•c /u\i -,.0 tan 45° + tan 30° ^ ^ -/S Vs+l
From (H) tan 75 = =; r,

= = —-=
^

^ 1- tan 45° tan 30° , , 1 Vs -

1

1 - 1 X -—

.

(73)2-1 3-1

, ,.o tan 45° -tan 30° „ ,--

tan 15= s
—

-^ = 2 - V 3
1 + tan 45° tan 30°

Also cot 15° = tan 75° = 2 + Vs, and cot 75° = 2 - -/S.

In (G) take x = 45°.

sin 22li°=^/4(l-cos45°)=^4(l--L)

1/2-^/2 = cos67|-°,

3 22^° = v'iTr+ci^745°) = ^ VZ+ V2 = sin 67j°,

tan22i°= ^^^ ^ /^^ = /i^llllin

cot 22-1 = \/2 + 1 = tan 67i.

We have now (see p. 44) found the ratios of 0°, 15°, 22i°, 30°, 45°,

60°, 67f°, 75°, and 90°. The student is advised to work these out

numerically, to make a tahle of them, and to compare them with the

graphs on p. 45.

Of the great number of formulae that can be based on those now

given, the following are of special importance :

sin as = 2 sin ice . cos 4a; (from F) = 2 .
^^—i— . cos^ Ax^ ^ ^

' cos^a; ^

2 tan is 2 tan ^x

sec^-lcc 1 + tan^iw'

cos a; = cos^ Aa;-sin^-|a; (from E) = cos2-|a;(l -tan^-ta;)

l-tan^ia; l-tan^-Ja;

2tania;
" sec^ia; "l+tan^ia;'
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Hence all the ratios of an angle, x, can be expressed rationally in

terms of one quantity, viz. tan ^x.

Sin (a + /3) X sin (a - /3) = (sin a cos (if - (cos a. sin /S)^,

= sin2 a (1 - sin2 /3) - (1 - sin^ a) sin^ /3,

= sin^ a — sin^ ^ = cos^ j3 — cos^ a.

Put /3 = 2a in (A), (B), and (H).

cos 3 a = cos a cos 2 a — sin a . sin 2 a

= cos a (2 coB^ a - 1) - sin a . 2 sin a cos a from (E) and (F),

= 2 cos^ a — cos a — 2 cos a ( 1 — cos^ a) since sin^ a
= 1 - cos^ a,

= 4 cos' a - 3 cos a.

Similarly sin 3 a = 3 sin a - 4 sin' a
2 tan a

tana +
tan a + tan 2 a 1 - tan'' a

tan 3 a = ; : : ;r- = TTT——1- tan a tan 2a , ^ 2 tan a
1 - tan a

1 - tan^ a
(1 -tan2a)tana + 2 tana 3 tan a -tan'

a

1 - tan^ a - 2 tan2 a ^
1 - 3 tan^ a

As a general example of the preceding methods and formulae we
will solve the equation cos 3x° = sin 2x°.

We have 4 cos' aj — 3 cos a; = 2 sin jb cos x.

.-. either cos a; = 0, and x° = n. 360° + 90° (p. 51),

or, 4 cos^ x-Z = 2 sin aj.

.
•

. 4(1- sin^ aj) - 3 = 2 sin x.

.-. 4 sin^ a; + 2 sin a! — 1 = 0.

Solving this as a quadratic in sin x, we have

- 2 + 7(22 + 4x4) -\ + Vb
sin X = =^—— = = •

2x4 4

Eeturning to the first equation, we have

cos 3a;° = sin 2a;° = cos (90°- 2a!°).

.-. 3a!° = w.360°±(90°-2a'). (p. 51.)

Taking the lower sign, x° = n . 360° - 90°.

Taking the upper sign, 5a;° = n . 360°+ 90°,

a;° = w.72°+18°.

If« = 0,a;°= 18°; if n = 1, a;° = 90°; ifw = -l, a;° = -54°.
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Hence the possible values

of x° from - 90° to + 90° are

-54°, 18°, and 90°.

Now sin 18° is +ve, sin

(-54°) is -ve, sin 90° is 1.

Hence is sin 18°
4

and is sin ( - 54°).
4 ^ '

1+ /s
4

-\+ Vb

:sin54° = eos36°.

= sin 18°= cos 72°.

The other ratios of these

angles are more complicated in

expression.

The following method is of

frequent application.

2'o express a cos x+h sin x

in one term, where a and 6 are

any real quantities.

Write

h

= cos a,

sin a.
Vd^ + V^

This can always be done with-

out inconsistency.

Then a cos a; + 6 sin a;

= Va^ + b^ . cos OL cos X

+ V a^ + 6^ . sin a sin x

cos (cc - a).

E. g. 2/ = 3 cos a; + 2 sin a;

= -/is cos (as -a), where

a° = tan-i f = 33i° approx.

.-. y = 3-61 cos(a!- 334°) app.

In Figure 31 the dotted

curves represent 3 cos x and

2 cos X, and the full curve

the algebraic sum.
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The greatest and least values of y are +3-61, when x° = 33^°,

213i°....

Also 2/ = 0, when cos(w°-53i°) = = cos 90°,

Then a; = 33i + w 360 + 90 = - 56*, 1
23i 303i, &c.

Applications to the Sides and Angles of a Teianglb, and

Solution of Teiangles.

Let 2.S — a + h + c. Then 2 (s-a) = J + c-a, 2{s-h)= a-h + c,

2 (s - c) = a + h = c.

((2 + 52 _ g2

cosC = 5—

t

(p- 53), and, by p. 58,

n
r,

2a5 + a2+j2_c2 (a+ 6 + c) (a + 6-c)
2 cos^- = 1 + cos C = r-7 = ^^ i\ ;

2 2ab 2 ah

-'i<"J „,

s(s — c)

. „C , „ 2a6-a2-62 + c2

2 sin^ - = 1 - cos C = —-
2 2ao

_ (a-6 + c)(-a + 6 + c)_

2^6 '

••-^-7'-^-*),

Is{s — a) {s -h) (s — c)

ah
sin(7= 2sin4Ccos|C= 2 /-

The area, A, = ^ a6 sin C = -y/s (s — «)(«- 6) (s - c)

;

If a, 6, c are given, the angles can at once be found, and hence we

can deal with Case II (p. 53) of the solution of triangles.

, . sin 4 sin £ sin ^+ sin 5' sin ^- sin 5
Again, = —— = —7 =

a a+o a—b
(see pp. 52 and 17) ;

a - 6 _ sin J. — sin £ _ 2 sin -Ki^ - 5) cos § (^ + J?) ."
c7T6

'^
sin ^+ sin i;

^
2 sin |(4 + i?) cos i (4 - £)

^P" ^^

= tan I (yl- 5) cot 4 (4 +5)
= tan ^{A-B) tan ^ C, since ^ (4 + 5) and \ C are

complementary.
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If a, b, c are given (Case I, p. 53, o fthe solution of triangles),

^{A - B) is found from the last equation, and ^{A + JB) = 90 - 1

C

is known.

Hence A and JB are found, and c = a. -—- •

sin A
By these means we can dispense with the direct use of equa-

tions (ii) of p. 53, and the whole work depends on factors for which

logarithmic tahles can be used.

Examples.

1. Find the trigonometrical ratios of 3°, given those of 15° and 18°

(pp. 57, 58, and 61).

2. Hence find the ratios for 33°.

3. Find the ratios of 7|°.

4. Solve the equation 4 cos a; - 3 sin a; = 5.

5. Show that the radii of the inscribed and escribed circles of

a triangle are — , , —z- , in the notation of p. 62.
s s —as —OS — c

6. Show that A = V(r . r^ . r^.r^) where the letters stand for the

radii of the inscribed and escribed circles.

7. Find the angles and the area of the triangle whose sides are 7,

6, 4 inches, by use of the formulae of p. 62. Check the result by
a drawing to scale.

8. Find the other angles of a triangle whose sides of 8 and 10
inches include an angle 25°.

9. If A, B, and C are the angles of a triangle, show that

sin 4 + sin 5 + sin C
(Use formulae, p. 57, and (F)).

sin 4 + sin 5 + sin C = 4cosi4 . cos ^5 .cos^C.

The Circle and Cieculae Measuee.

Let a regular polygon, ABC ..., oi n sides be inscribed in a

circle, radius r, centre 0.

At the angular points A, B,C, ... draw tangents so as to make

another regular polygon, EST ,.,, circumscribed about the. circle.

The angles at the centre, AOB, BOC, &c., are each •
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OB, OS,... bisect these angles. The angles AOR, BOB, BOS,

&c., are each
n

OB meets AB at right angles, at M, and bisects it.

180° 180°
Then AB=2AM:=2A0 sin -^—= 2 »• sin

The perimeter of the inscribed polygon

.X, o 180°
= n . AH = 2r .ti sm

w

180° 180°
Area AOB = AM. MO = r sin / cos

ti n

The area of the inscribed polygon

= Area AOB xn — --^
180 180

r'"'. n sm cos = 4 »" n sin
n n

1,.2
2 '

360

RS=2B.B=2.0B ianBOB = 2 r . tan
180°

The perimeter of the circumscribed polygon

DC „ X 180°= n . BS = 2r.n tan
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1 8n
Area ROS =OB.RB = r.r tan^!^ •

H

The area of the circumscribed polygon

= n. ROS = r^.n tan
71

From pp. 58-9 we can calculate the trigonometrical ratios of

180° 180° 180° *

23 ' 2* ' ~2^' ••'

successively. The work becomes very arduous as the index

increases, but presents no difficulty. Hence we can construct

the following table :

Perimeter of Polygon.
No. of [A] [B]
sides. Inscribed. Cii'cumscribed.

2)X_ 2rx
i 4 sin 45°= 2^2 =2.83... 4 tan 45°= 4.

8 8sin22i°= 8 x .383 = 3-06 8tan22J°= 8x.414 =3.313...
16 16 sin 11J° = 16 X.195 = 3.12... 16 tan llJ-° = IBx .1989 = 3.183...

32 32 sin 6f° = 32 x .09803 32 tan 5f° = 32 x -09849
= 8.13635 = 3.1517...

64 64 sin 2l|° = 64 x .04907 64 tan 21J° = 64 x .049127
= 8.1405... = 3.1441...
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perimeter of the inscribed polygon are increased, while those of

the circumscribed polygon are diminished.

Hence

„™ 1
180° „r„ • 180° „„^ 180° „„ ,, 180'

a^'^sin——; < 2"' sin—— < 2'" tan—— < 2™-Han-om—

1

oTO nftt ^ om—

1

Thus the numbers in column [A] must continually increase

as we read down, while those in [B] decrease ; but however far

we continue the table, every number in column [A] must always

be less than any number in column [B].

In the few cases taken, the final numbers only differ in the

3rd decimal place.

If we had taken 2^^ sides the difference between the last

numbers in [A] and [B] would have been 14-10^ nearly.

Hence ti sin and n tan tend towards the same value as
n n

n is increased by continual doubling, and this value is between

3-1405 and 3-1441.

1 80
Definitions. The limit towards which n sin tends as

n

n is increased indefinitely* is called tt. In the notation of

,.„-T * 180
p. 100

J_^ M sm = TT.

TT has been evaluated with great accuracy by this and other

processes. Its value is 3-14159....

The limits towards which the perimeter and area of a regular

f

inscribed polygon tend, as the number of its sides is indefinitely

increased, are defined to be the measures of the circumference

and area of the circle.

[This apparently cumbersome definition is necessary, as soon

as we leave pure geometry, principally because no commensurable

line or area can be found to measure the circumference and area

of a circle, or indeed of any common curve.]

* Here we increase n by continual doubling. It is beyond our scope to

show that the same limit is obtained by other steps of increase,

t Regularity can be shown to be unnecessary.
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Hence the measure of the circumference of a circle, radius r,

is 2r . IT ; and the measm-e of the area is

Lt « . 360 „T i

- sm = f2 I

2 «. J—/

t
. 180

m sm J

where »» = ^n, = tt^^.

It is easily shown by the laws of limits (p. 104) that

L'
, 180 T t

. 180 180
Mtan =1 «sin sec

T t
. 180 T t 180= I 11 sm— X I sec — = TT X 1 = TT.

Hence the perimeter and area of the circumscribed polygon
also tend towards 2 irr and -nr^ as the number of sides is increased.

The length of an arc of a circle, such as AP, is obtained thus

:

When n is greatly increased P will lie between two near
angular points Pj, P^ of the polygon

or at one of them. By increasing ii,

-Pj may be made to approach P^, and

either may be substituted for P with as

small an error as we can assign. If

t sides occupy the part AP^, then the

con-esponding part of the perimeter of

the polygon is - of its complete peri- „ „„
fl riG, 66.

meter. The length of the arc is then

defined as - of 2i:r, when n (and therefore t) is increased in-
n ^

definitely. The area of the sectorAOP is similarly defined as - of

TT?-^, and .•. = arc AP X Jr.

The ratio of the length of the arc AP to the radius OA is

called the circular or radian measure of the angle AOP. It is

easily seen that this ratio is independent of the size of the

figure. It is most conveniently measured on a circle of unit

radius. The circular measure of the angle AOP is t times that

I- 2
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of an angle standing on a single side of the polygon just

described and is - of the circular measure of four right angles.
n

Equal angles have equal circular measures, and the ratio of the

circular measures of two angles is the same as the ratio of

the measurements by degrees, &c., at the beginning of this

section.

A radian is that angle whose circular measure is unity,

i.e. the angle subtended by an arc equal to the radius. The

radian is the unit of circular measurement.

The circular measure of four right angles is 2?;, being the

circumference of the circle whose radius is unity.

T 360 T
.•. 277 radians = 360 degrees ; 1 radian — -— = 57-3 degrees

2Tr

approx.

In general, x degrees = xIb^'"'^ radians.

An angle can thus be converted easily from degrees to radians

and vice versa, e. g. 90° = \-k radians, 45° = \t[ radians, 1° ^ ts^'"'

= •0174533... radians, &c.

From the definition, if Q is the circular measure of an angle

^OP, arcJP

arc AP = e X r, where r = OA,

and area of sector AOP = arc AP x ^r = fr^e.

sin^TT is used as the abbreviation for the sine of -Itt radians

and is the same as sin 60°, and similarly with all the ratios.

The following is a type of simple problems involving circular

measure

:

At what radius does an are 10 feet long subtend 15°?

15° = -j^j^ff radians.

.. 10 = ^-K X r, when r feet is the radius
;

120 „„ „
.-. r = = 38-2....

TT

Note that- = -31830....
TT



CIRCULAR OR RADIAN MEASURE 69

Approximate values of the ratios of small angles.

AOP is a sector of radius r, and OP meets the tangent at A
in T, and I AOP = 6 radians.

From the method of definition of an -p

arc, the arc AP lies throughout its length

between the chord AP and the tangent

AT.

. . Area TOA > sector AOP
> triangle AOP.

Fig. 34.

ir.r tan d > ^r\ > fr^ sin e (pp. 65 and 67).

(i).-. tan 9 > > sine

This applies to all positive values oi 6 < ^ir.

The following table, illustrated by Figure 35, shows some of the

numerical values

:

Degrees.
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When is a positive acute angloj

sin0 = 2sin|0.eos^0 = 2 tan^e .cos^ J0

= 2taii^e.(l-sin2^0) (p. 43)

since tan|9 > ^6 and sin|-0 < ^6 from (i).

.-. e > sine >e-|e3 (ii)

cose = 1-2 single (p. 58)

>l-2{^ef;
l>cose>l—^e^ (iii)

and eos0 = l-2sin2|fl < 1-2 {{^e)-l{^e)^}^ from (ii),

.-. 1-162 < cos 9 < 1-^62 4-33^6* (iv)

These relations may he thus expressed

sine = e-K^.^e^,

cos9 = i-^e^ + K^.^e^,

where Kj k^ are unknown positive proper fractions depending on 6.

tan 6 = -„ < :r7^ , for the numerator of the second fraction
cosS l--|e''

is greater and the denominator less than that of the first

;

and similarly tan 6 > , _ 1 aa , 1 ^4 •

These formulae are developed further on p. 241.

The following result is used on p. 99.

tan e — sin e = tan ^ (1 — cos 0)

= 2tane.sin='ie < 2 .^^^.{W < ^^'

.-. - (tan 6 - sin 6) < —
, where 6 is the radian measure of an

1-1
acute angle. ^

Examples.

1. sinl° = TroTr-i/<i(,^ir)3

= •0174533-KiX.0000013;

.-. sin 1° is hetween .0174533 and -0174520.
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2. xlo^ < tanl°<
0174533

< -017456,

tan 1° is between -0174533 and -0U455.

3. cos 10° > l-ii^TTf > 1--015233 > -984767,

< 1 --015233 + -000058 < -984825.

4. The distance of C, the centre of a circular disc which subtends an

angle ^ at a point 0, is given by

dsin ^6 = r.

T
If 6 is less than 1°, - differs

a

from 49 by less than i( "i ,
2 ' *^360/

i.e. by less than one part in five millions.

In such cases the radian measure may be used as a very close

approximation to the sine or tangent.

Pia. 36.



SECTION IV

EXPLICIT FUNCTIONS. GRAPHIC REPRESENTA-
TION. EQUATIONS

We have already used the idea of functions, and have repre-

sented the functions lO"', log*, sin a;, cos a;, and tana; graphically

(pp. 6, 45, 47), and we have used rectangular axes on p. 37.

y is said to be an explicit function of x, when both y and

X vary, but y and x are connected by an equation, such that

when a value of x is known the corresponding value ofy can be

determined. This statement is written y ^f(x). Other letters

(F, E,
(f>,

i/f, &e.) are used, as well asy, when more than one

function is involved in a problem.

If the actual arithmetic of evaluation can be performed, the

values oi f{x) or y can be plotted by the ordinary method on

squared paper. If, as x takes all possible values from a; = a to

X = I, where a and b are any fixed quantities, the corresponding

values of y are such that they can be represented by a line

drawn without removing the pencil from the paper, and if to

every point on the line drawn there corresponds a value of x,

then the function is said to be continuous in x from a to b.

[This should be regarded as a preliminary definition of continuity

;

a rigorous definition involves very diflBcult conceptions.]

The simplest functions of x are given in the equations

f(x) = y = x; y = mx; y = mx + &; y = ax^ + bx + c;

where m, k, a, b, c are constants, that is, are unchanged while x

and y yai\Y.

Note. Throughout this section the conventions of pp. 37-8 are

used, so that e.g. MP = -PM, and LP = OP—OL for all possible

positions of 0, L, P in & line.

Direct Variation.

When y = mx, y is said to vary directly as x. This is written

y <x. X, and m is called the constant of variation.
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If («j , ^j) («2 , ^2) (*3 ! ^3) • • are pairs of values, then

lAj-l It'll Jjn

that is, the ratio of the constituents of a pair is constant.

If a line be drawn through the zero point of two axes at right

angles to each other, on which x and 1/ are measured to make an

angle 9 = tan~^ m with OX, and any point P be taken on it,

and FN, PM be drawn parallel to the axes OX, 07 to meet the

axes OY, OX, then from pp. 41-3

PM_ ON
0M~ 031'

for all positions of P (see F'ig. 37).

[031 is called the abscinsa (the part cut oflF), MP the ordinate

of the point P. 031, 3fP

together are called the

co-ordinates of P with

, — tan & = m

reference to the axes of

reference OX, OT. OX is

called the axis of x, 01'

the axis of y.J

Hence if (x-^, y,) are

the co-ordinates of anj'

point P on the line,

^ = ».

Conversely, any pair

of values that satisfies

the relation y = mx can be represented by a point on the line.

The straight line OP, continued indefinitely in both directions,

is then said to represent the equation y = mx, and y = mx is

said to be the equation of the line.

If («o) J'o) ^^ ^ P^i^ of standard or known values, then the

value of y corresponding to any value of x is found from the

equation — — m — —t

A relation, such as ^— 4 = 3 (x — S) or y = 3a;— 11, can be

put in the form y = mx-'rk. Such a relation is direct variation,
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where the y and m are measured, not from zero, but as the excess,

above fixed values ; for example, if the charge for excess luggage

is 3 farthings for every lb. above 100, together with a registra-

tion charge of sixpence, the equation _y= 24 + 3 («— 100) would

give the charge (^ farthings) for a; lb. of luggage (a; > 100).
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Mark ofF OK=k on the axis of ^ (Fig. 38 or Fig. 39).

Through K draw a line making an angle 6 — tan"' m with the

axis of 00. Take any point P on this line, draw PM, PN as

before, and draw KL parallel to OX to meet MP.
Then for all positions of P and of K (whether OK is positive

or negative), using the convention that MP, &c., involve direction

and magnitude as on p. 36,

, , KN KO+ON ON-OK y-k
«. = tanS =^=—g^ = -^^^=^,

where {x,y) are the co-ordinates of P. .". y = mx + k, and the

co-ordinates of any point on the line drawn satisfy the relation.

Conversely, any pair of values (»,^) which satisfy the relation is

represented by a point on the line.

We have here shown implicitly that the equation y = miv + k

is the equation of a straight line. (See p. 133.)

The Quadratic Function.

The equation y = asc^ + bx + c is closely connected with the

theory of quadratic equations, which we shall summarize here

;

it is also a form of the equation of the conic section called

a parabola (see pp. 148, 153), and has other applications.

The graph ofy depends of course on the magnitudes of a, h, c.

For simplicity we shall take a to be positive. The student is

recommended to work through the arguments also with a

negative, finding the maximum value of y.

y=ax- + bx + c = a{x^ + 2.^^x + (A/) +c-a{^J

When « is a very great quantity, positive or negative, y is

very great.

b 2

The least value y can have is obtained when (x + — ) =0
^ 2a''
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i.e. wliena; = — ~, for this square cannot be negative. This
it ci

4{zc b^
minimum vahie of v is

The minimum value of y is positive if iac > W-, zero if

4ac= ¥, negative if i^ > 4«c.

The curve representing the equation can be shown to be

symmetrical about the vertical line through its lovrest point (T),

i.e. the point where y is least and x =— -—

For cut off Oif = - — (see Kgs. 40-43). Then

4a

Let P be any point on the curve, whose abscissa is OL.

Then, from (i).

Now take L' so that M is the middle point of LL' and

ML + ML'= 0. Draw the ordinate L'P'= LP.

Let («', /) be the co-ordinates of P', so that y' = L'P\

m' = OL'.

Then {MLf={-MLY= {ML'f= {OL'- OMf= {x'+ ^) ,

and / = LP = a^(x'+ —) + ^^^| = nx" + bx' + c.

. •. the co-ordinates of P' satisfy equation (i) and P' is on the

curve.

Then by obvious geometry PP' is bisected (at N) at right

angles by the vertical through M. Hence the points of the

curve on lines parallel to OX are in pairs equally distant from

FM; that is, the curve is symmetrical with regard to FM,
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Fig. 42.
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If 52 < 4 ac, F, the lowest point, is above OX, and there can be

no intersection with OX (Fig. 43).

\
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.-. a + /3 = 2 X (- — ) ='^
V 2a'' a

Also ix^={OM + MA) (OM + MB) = OM^- MA\ since

3J£ = - MA.

Now X = oi, ^ — satisfies the equation of the curve.

.-. o = a\(OA-OM)^-^-^l^.

,. ^1^ = MA^.

•• ^^ = (-2^)--!^ = .-

[Of course these relations can be obtained by direct solution of

the equation c«^4-^a; + a = ; for a and /3 are =
;

; -,
2a

.-. a + /3 = and a/3 = -•

When a; = 0, y = c. In the figures OC is cut off equal to c.

By taking various values the diagrams show that when c as

well as a is positive, a and /3 (OA and OB) are both positive

(Fig. 40) or both negative (Fig. 41) ; when c is negative, a and /3

are of opposite signs (Fig. 42).

liW'> i.ac,y = a\x'^ + -x+-\ — a [x^

-

{ol + p) x + oLji}

= a{x— (x){a)~ /3).

Hence x — a. and «— /3 are factors of ax'^ + bx + c, when these

are real roots.

Also (taking a > /3),

when a; > a, y is positive, both factors being positive ;

a; = a, y = ;

oc > X > 13, t/ is negative, the first factor being

X = ^, y = ; [negative
;

X < /3, y is positive, both factors being negative.

Thus the change in sign of y can be traced and compared

with the figures as x diminishes from a large positive to a large

negative quantity (Figs. 40-42).

Tr,o (/ *\^ iac-i^j , . ,

it (i^ < iac,^ — aUx + —\ +
^
— > and IS always posi-

tive, as in Fig. 43.
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Inverse Variation.

The following are simple functions of x, where x appears in

the denominator of a fraction.

a + bx + cx^., . a a + hx a + hx

^ ^ ^ ^ X " X ^ x + d

a

x + d

When y —- i a being constant, y is said to vary inversely as

x. This is written yx--
X

Ify and x are measured, not from zero, but as the excess above

3
fixed values, we have such an equation as y— i — , i.e.

X— 5

y=4 +
4«-17

x— 5 x—G

Any such relation can be put in the form y =
a + bx

x + d
' which

reduces to ?/
= when d is 0, and to «' = - when b also is 0.

•^ X " X

It will therefore be sufficient to trace the graph of the more

complex function only. It will readily be seen that none of the

essential properties of the graph depend on the numerical values

or on the signs taken.

y =f{x) = ^ = 4 +
x— 5 x—5

X
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Thus if X = 5— ^Vj

"TffcT!

= 4- — = -26,
10

= 4-300 = -296,X — 5

a;=5+Jjj, ^ = 4 + 30 = 34,

a;=5+x5o) y= 4 + 300= 304.

Let C be the point (5, 4), Figure 44.

If Pj be any point on the curve whose abscissa is in the

neighbourhood of 5, and F^ M, parallel to OX, meet 07 in M
and the line CB {x = 5) in E,

20

-* »-

-10 p

M

-10

•lA

J 10

Fio. ii.

then OM = y = 4 + — = 4 +
-5 ^1/Pi

3 _ 3

~M5 ~ "*" iSPi

where RP^ may be positive or negative.

As OM is positively increased indefinitely, BP^ becomes very

small and remains positive. As OM becomes a great negative

quantity, BP^ becomes very small and negative. The curve
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therefore lies indefiaitely near to either side of the line CB

produced both ways.

Similarly, if P be a point whose ordinate is nearly 4, and

PQN, parallel to OY, meet OX in N and the line y=i (CQ)

then QP=NP-NQ = y-, = -1-^^^^.

As ON increases indefinitely, QP becomes indefinitely

small.

Lines as CB, CQ which satisfy the conditions described are

called asyrn.'ptotes (lines which do not meet) to the curve.

The curve now drawn is a rectangular hyperlola.

It is left as an exercise to show that the two branches are

equal in all respects.

As a guide to drawing, it may be stated that the line through

C at 45° to OX (A'CA) divides the curve symmetrically (see

pp.147, 148).

In the ordinary case of inverse variation, y = - , the pairs of

values are connected by the equations x^yj^ = x^^^ — ••• "*•

If x^y^ be a pair of standard or known values, the value of y

corresponding to any « is y = -2^ •

Compound variation. The more complicated cases of varia-

tion, involving more than one variable, are best discussed by an

example.

If F is the volume of a given amount of gas, P the pressure

under which it is kept, and T its temperature on the scale of

absolute temperatures, then the following physical laws are true

:

F<x T, if P is unchanged,

Fee p, if r is unchanged.

Let Pq, T^ be standard pressure and temperature. These are

generally taken as Pq— ''^^ (mm.), the mean atmospheric pressure,

and Tq= + 273 (degrees), the temperature of freezing-point on the

absolute scale.
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Suppose P unchanged while the temperature changes to T^,

V V
and let V^ be the resulting volume. Then w — Tp'

'

Now suppose the temperature unchanged at Fg, while F
changes to P^, and let Fj, be the resulting volume.

Then F,.P= r„P„.
VP V P

Eliminate V-^ from these equations and we have -™- = " "
.

'
-'o

Vq, being the volume at standard pressure and temperature,

may be called the standard volume.

VP
Hence under all changes of temperature and pressure, -^

remains unchanged.

T T I
.'. F = -p X const, oc -p oc T X -p-

Similarly given that the volume (F) of a right circular cone

varies as its altitude (A) when the radius (r) of its base is con-

stant, and as the square of its base radius when its altitude

is constant, it follows that

F = hr'^ X const, cc /i x r^.

In the latter case F is said to vary conjointly with /« and the

square of r ; in the former case F varies conjointly with T
directly and P inversely.

Notice that in neither case is the ' constant of variation ' used.

In experiments the former is used as the equation

P T
F — Fx — ^ ^

Generally, if a; cc ^ when z is constant, and xtx. z when y is

constant, then (cx. y x z when y and z both vary.

cs "1~ ft'V -I- cy
The graph of the function — illustrates several important

3? + ct

methods.

One numerical example will be sufficient.

, , 3a;2-12a;+35 , , 25 , ,. ^ ,. . .

-Liet y — — = 4 a; + f + by direct division.

G 2
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X V

Since 3a!2-12a;+35 = has no real roots,

"fir,c\ y '^ never zero.

1 - 325 Let P be any point on the curve. Let PM,

I I 6 50
P^J'^llel to OY, meet OX in M, and the line

i -11.5 y = |a! + f in e, so that J/§ = |Oi/'+|.
ik -41.75 Then

'-' '-i^-H MP = y^l.^l^^ = Mq^^.
25 "'"ai-S £0-5

5 + ft 9 +P+--
. 0p^J5_

5| 59.7

6 35.5

7 24.5 £B = 5 is clearly an asymptote.
8 21-83 . . ,

9 21.25 As X increases indefinitely QP becomes small,

j2 gg'^
and GQ (y = fa3 + f) is an asymptote, where

14 25.3 G is (5, 9) the intersection of a; = 5, and
16 27.8

2/ = f a: + 1-

~
\

~
^07

'^^^ curve is then as drawn in Figure 45.

- 3 - 6.1 This curve is a hyperbola (see pp. 147, 151).
- 4 - 7-3

- 5 - 8-5

~
o ~iE'? Whatever value of a; is taken, there is one and- o — 1^.4

- 10 - 15.2 only one value of y. Every vertical line meets
+ C0 +00

^jjg (jm-ve once.-00—00
But if a value of y is taken, say ^j , we have

a quadratic, Sk^ — 12aj + 35 = y^ (2a! — 10) to determine x.

The roots of this are real,

if (-6-2/i)2-3(35+10yi)<0,
if 2/i2_i8y^_69<0,

if (2/1 - a) (yi
- S) < 0, where a = 9 + 5 -/e = 2 1 -25, and

^ = 9-5-v/6 = - 3-25 approx.

If yj^ > a both factors are positive, and if y^ < /3 both factors are

negative; in both cases the roots are real and different. That is,

every horizontal line above 21.25 or below — 3-25 meets the curve

in two points, as LK, L'K' in Figure 45.

If y^ = a or /3 the roots in x are equal, being 9-1 and -9 (approx.)

respectively, and y^ = 21.25, y^ = — 3-25 are horizontal tangents

(touching at B, E).

If y^ is between a. and p, (y^ — a) is negative, (yj^
— /3) positive, the

product is positive, and there are no real roots in x.

Hence y^ can have all values except those between 21-25 and

-3-25.
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The result is expressed thus : the range of the function is from

— 00 to —3-25 and from 21-25 to + oo .

Similarly the range of the function 2a;2-4a3+ 1 (Fig. 40, p. 77) is

from — 1 to + 00 .

(The line A A' bisecting the angle between the asymptotes divides

the curve symmetrically, see p. 147.)

Examples.

1. If !/ = «3 and 2^ = x^, express y as a function of x.

If 2> = cos (5' + x) and cos x = q, express ]) as a function of q only.

2. Show that Saj^- 7a;+ 53 has a minimum value of 48i|.

„ ,, 27 — 2p —p^ has a maximum value of 28.

„ „ 302/^+ 27y — 154 has a minimum value when

Test your results graphically.
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3. If y varies as x, and x varies as a, and 3/ = 3 when a; = 10, and

CB = — 2 when » = 6, find z when y = - 1, and show that a always

equals - lOy.

4. The horse-power required to drive a given ship varies directly

as the cube of the speed. If 5,000 H.-P. are required at 29 knots,

show that 850, roughly, will be required at 16 knots.

5. The intensity of illumination at a point due to a source of light

varies inversely as the square of the di&tauce of the light from that

point. If a person can just see to read a book 4 ft. from a candle,

show that he will requiie about 8 such candles together to see to read

1 1 ft. away from them.

The Eational Integral Function. Solution of Equations.

If
_j^ =y («) = a^jO;" +a„_ia;"~^ + ... 4-«i« + «0! where k is a

positive integer and fl„ , «„_j , ... a^, a^ are real commensurable

quantities, /(«) is said to be a National Integral Function of « of

the m"* degree.

Remainder Theorem.

Divide f{x) \yy x— OL in the ordinary algebraic way, till the

remainder, R, does not contain x. The quotient, Q, is a rational

integral function of the w— 1"* degree, whose first term is

Then f{x) = (w— cxJ.Q + B, whatever the value of x.

[Thus 2x^-3iv + 5 = (.r-2) .(2»H 4» + 5) + 15. Here

Q = 2x^ + ^x+5. £= 15.]

The identity is still true if a; = a. In this case

ii + (a-a).Q'=/(a) = fl„a" + «„.ia»-i+ ... «„,

where Q' is the value of Q when a is substituted for x.

•
•• i^ =/(«).

\R=. 2x2''-3x 2 + 5 = 15.]

Hence the remainder, wheny («) is divided by «— a, is obtained

by writing a for x va.f{x).

CoROLLAEy. If oi is a root of the equation f{oc) = 0, then

E =f(pi) = 0, and x— a. is an exact factor of ./(«).
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Eoots of f (x) = 0.

To show that there cannot he more than n different real roots of

f(x) = 0.

If possible let (Xj, Kg ... a„, cx„+i be roots, none equal to

another.

Then /(») — {x— a.^ . Q = (*-ai) {(«— a2) Qi + ^i}> where

Qi is quotient and B^ the remainder if Q is divided by x— cx^.

The first term of Qi is a„a"~^.

Writing a^ for x, =f{(X^) = (aa-aj {0 + ^J.
.•. i?i = 0, unless Kg = a^.

-• f{x) = {!>!-0i^){x-0i^).Q^.

Continuing this process, we have

/(«) = a„{x- (Xi) (x- a^) (x-oi.,) ...{x- a„).

This is true for all values of x, e. g. when x = a„^i,

• =/(a„+i) = a„K+i-ai) K+i-aa)--- K+i-aJ-
But unless one of the factors is zero the product cannot be zero.

.-. a„ - 0, or a„+i = (Xj or ofj ... or a„.

Hence a„+, equals one of the roots already used, unless a„ = 0.

If «„ = 0, the function is only of the n — V^ degree. Apply-

ing the same argument it would follow successively that a„_j — 0,

a„_2 = 0... «(, = 0, and the function disappears.

Hence, unless the function is identically zero, there cannot be

more than n roots oif{x) = 0.

It does not follow that there are as many as n or indeed any

roots of the equation ; this is considered in Section VIII, p. 238,

Conjugate Boots.

In the proof of the remainder theorem, it was not assumed that a
was commensurable.

It can be shown that if /3+ -/y is a root of/ (a;) = 0, then /3— Vy
is also a root, where y is positive and not a perfect square, and j3 and y
commensurable.

Divide f{x) by

{a!-(/3+-/y)} {a;-(/3- /y)} = x^-2Px + fi'' -y.

Let Q be the quotient.
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The remainder may be written li^ x + E, where A'j and B do not

contain x, and are commensurable since all terms in the divisor are

commensurable.

Then f{x) = Q.{x^-2l3x + ^^-y) + EiX + E.

Substitute ^ + Vy for x and let Q' be the value taken by Q

;

0=/(/3+ V'y) = Q'xO + E^{/3+^/y) + E.

. •
. i?i Vy = —{E + E^ /3), commensurable equal to incommensur-

able, which is only possible when each is 0.

.-. i?i -/y = 0, i^i = 0, and = if + i?i . i3
= i?.

.-. f{x) = Q . >a!-(p+ •/)/)} {as - (/3 - -/y)} for all values of x.

Write 13 — -/y for x,

then /(/3-^/y) = (2".{-2^/7).0 = 0;

.'13— Vy is a root.

13 + V y and j3 — -s/y are said to be conjugate.

[This result is already familiar in quadratics ; e. g. the roots of

a:2-3a3+l = are f+ -/f.]

If we knew that such an identity as (x + ay = x^ + Qx'^ + lx + c

was true independently of the value of x, we should probably not

hesitate to equate the coefficients of equal powers of x on the two

sides and say 3a = 6, Sa^ = 6, a? = c, and a = 2, 6 = 12, c = 8.

The following is the justification for the process.

Theorem. 1/ «„»" + «„_ia;"-^ + ...+cIq

and ^„«"+S„_i«""^+...^o'

two rational integralfunctions, are equalfor wore than n values of x,

then the coefficients are equal term hy term and thefmotions are

equal for all values of x.

For lefc «!, (Xg,. • Ofre+i te the values of x for which the functions

are equal. Then these quantities are n \-\ roots of the equation

(«„- *J «» + («„_!_ 5„_j) a;»-i + . . . + («!- 5i) a; + («,- 5„) = 0.

As on p. 87, two of the a'a are equal, contrary to the hypo-

thesis, or a^— h^= 0, and successively

««-i-^n-i=0, «„_2-i„-2= 0....

•• «« = ^«. «n-i = ^«-i. «n-2 = ^«-2---
. «i = h and «o = *o-

Hence the functions are equal to each other for all values of x.

Of coui'se n is assumed to be finite in this theorem.
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This theorem is applied to establish certain relations between

the coeffi iei, 's anil roots of an equation of the «th degree.

Let »] , a . . . c<„ be « different roots (if possible) oif{x) — 0.

Then by p. 87,

= «„(»- aj) («- (Xg) ...(«-aj
= by direct multiplication

«„ {«"-«"-! («! + ttj + ) + a;"-^ (a^ (Xj + «! (Xj + . . . + (X-^ a„) - . .
.

}

= «„ {a;»-jBia;"-i+j02a;''-2-... + (-l)V„},

where j)-^ is the sum of the n roots, jo^ is the sum of the J^^
products of roots 2 at a time, p^ the sum of the ^Cg products

3 at a time, . . . and p^ is the product of all the roots. E. g. in

the equation of the 3rd degree jcij = a + /3 + y, 2h — (X^ + /3y + yix,

p^ = (x/3y where a, /9, y are the roots.

This equation is true for all, that is, for more than «, values of

X. Hence the eoefBeients on the two sides are equal, each to each.

• » — _ "jizl „ — ^i>—2. „ _ _ "nrA „ _ / _ 1 V»^P\— : Ih— > Ih—— -z^---Pn — \ ^j •

The theorem is easily interjjreted if two or more of the roots

are equal.

i c
E.g. in the quadratic ax^ + bw + c = 0, (x + j3 = , (xfi — -

>

where a, /3 are the roots (see p. 79).

If a = /3, 2o( = - -
, a2 ^ -

, and i^ :=, iac.
a a

a

Note. These relations are not of use in solving equations in

general.

Ill some cases where we have further information as to the roots,

we can reduce the degree of the equation and then solve it.

E.g. given that the roots of 8x^— 12a;2-2a;+3 = are in

arithmetic progression

;

Let OL — d, a., a. + dh& the roots

—

^ = sum of roots = 3a ;
. ' . a = J

- f = product of roots = a (a^ - d"^) = |(i - (i^)

;

.. id^ = 1 + 3, cZ = + 1, and the roots are — ^, J, ^.
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Allied Equations.

Multiplication of Boots.

If a is a root of/(a;) = 0, then ra. is a root of

F{x) = a„ a;" + ra^_^ x'^-^ + r^ «„ .2 *"'^ + . . . + ''""^
«i a? + ?'" fto = ^

where r is any quantity. For

F{r(x) = «„?". a» + ra„_;^ ?»-i a"-i + . . . + ?"-^ «! ra + /" ffg,

= r»/(a) = 0.

In particular, take r = — 1.

Then if a is a root of/" {x) =0, — a is a root of

a„a;«-a„_ia«-i + ... + (-l)X = 0.

Example. 2 and 3 roots of a;^ - 5aj + 6 = ; 20 and 30 are roots

of x2-60a;+ 600 = 0; -2 and -3 are roots of x^--5x+-0Q = 0;

and -2,-3 are roots of as^ + Sw + 6 = 0.

Diminution of Boots.

Let x'= x— d, where d is any quantity.

Let /(a;) - «„«" + «„_i«"-^ + . . . + «o

= ^„ «'» + ^„-ia;'«-i + . . . + Jo = J- (*)

for all values of x.

A„, J„_i, ... -4g can be found in terms of d by a direct process,

which is very laborious except in the simplest cases.

E.g. if (^= 2, 3£c3+2a;2 + 4a;+l

= 3(x-2)3 + 18a;2_36a; + 24 + 2a;2 + 4.r+l

= 3(a;-2)3 + 20(a;-2)2 + 48£c-55

= 3(a;-2)3 + 20(a;-2)2 + 48(x-2) + 41.

They can be found more rapidly as follows :

F^x) is merely a re-arrangement oif{x); hence iif{x) and

F{x) are both divided hj x— d the quotients must be the same

and the remainders the same.

Hence the quotient when/(«) is divided by a;— <^ is that when
F(x) is divided by x', viz.

say, and the remainder is A^. [Hence A^, =f{il), p. 86.]
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Similarly, the quotient when Qj is divided by «' is

and the remainder is A^, and so on.

Therefore A^, A^, A^,... J„_j are the remainders when f{x)

or F (x) is divided by x— d n—1 times in succession, and

A^ = a^ since these are the coefficients of »".

Finally, if a is a root oif{x) = 0, then

=/(a) = F{oc) = A^{oc-dr + A,_, (a_r/)'»-i + ... +4„,
.-. (x— d is a root of ^„«" + J„_i«"-i + ... + J^ = 0.

Example, d = 2,

a:-2)3K3 + 2a;2 + 4w+ l(3a;2 + 8w+20 = Q^

3x^-6x^

8cc2
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Omitting the x's we have

3 2 4 1 ,3
or simply

2x3 = 6 2x8 = 16 2x20 = 40

8 20 41

Remainder 41
;
quotient 3«^ + 8a; + 20 = Qj.

Similarly, to divide Q^hy x— 2, 3 8

4

16

1

40

8 20 41

20

_6 2S

14
I

48

Remainder 48; quotient 3x+li = Q^, and to divide Q^
bya;—

2

3 14

_6

1
20 Remainder 20; quotient 3.

Now put these divisions together

3 2 4 1

40

41

6
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Numerical Solution of the General Equation in one

unknown.

We have now all the materials for the approximate numerical

solution of an equation /(«) = 0, where/(«) is a rational integral

function.

Consider f{x) = Sa-^-Sa;^- n^- 10 = 0.

The function changes its sign between

X = 3 and a; = 4 ; the graph crosses the

axis of a; and there is a root between

these vakies. It does not appearthat there

is any other root. (See graph, Fig. 46.)

Write a new equation with roots 3 less than those o{f{x) — 0.

3 _5 -11 -10
9 12 3

/(0) =
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220 4000 -7000

3 223 4223

223 4223

3 226

-2767000

226

3

444900

2290

Y

60.
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f^{!B)= 3a;5 + 2,290*2 + 444, 900«- 2,767,000 = 0.

/3(7) is positive, /g (6) is negative. The root oif^{x) = is

between 6 and 7, oi /^{a!) = between 1-6 and 1-7, and of

/(«) = between 3-16 and 3'17.

Tbis process can evidently be continued indefinitely ; as

shown in the next example the actual work is not very arduous

when the method is mastered.

/(O) = -ve
/(I) = - 31

/(2) =+114

/(_!) = -ve
/(_7) = _ve -=•

_

/(-8) = +ve Positive root

1

Reduce hy 1

To find one positive and one negative root of

a!* + 9a;!i + i6.K2^23a;-80 = 0.

Roots between 1 and 2, and between —7 and

9

1

10

1

11

1

12

1

16

j^
26

11

37

12

4900

399

{a) 1

Reduce by 3

(6) 1 142

Multiply roots by 1

(c) .0001 -142 61-24

{d) 61

Multiply roots by 10

{e) .61

23

26

49

37

-80(1-3036

49

1 0000 {a)

305691

43

I

-31(

I —
86000

15897

101897

17121

-4309 {h')

130
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If a is required root, the root of (a) («') is 10 (a— 1) = a'.

Root of (b) (V) is a' — 3 ; if the multiplier 4 were taken the sign

of the last term would be changed and the roots would have

been passed.

The root of (c) is 10 times that of {h).

(<•/) is an approximation for c.

+ 1 changes the sign. Root is between and 1.

The root of {e) is 10 times that of (d).

(d) is a quadratic equation. The next process reduces it to

a simple equation and a final approximate number 6 can be

found by division.

The root is then 1-30 36 to the nearest digit in the fourth

decimal place.

To find the negative root, multiply the roots by — 1 (p. 90),

i.e. write —x for x. The positive root of

a;4_9a;3 + 16a;2_23a!-80 =
is then the negative root of the given equation.

1 -9 16 -23 - 80 (7-4614

7 -14 14 - 63

-2
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As a checkj form the quadratic with roots 1-30 and —7-46,

viz. i!)^+6-16a!— 9 70 = 0.

This should be a nearly exact factor of

In fact this expression equals very nearly

(a^ -I- 6.16»- 9-70) x(«^-f 2-84 K+ 8-25).

The other quadratic factor has no real factors. Hence there

are no other real roots.

Many difEculties of handling arise in this method ; they can

generally be overcome by continually checking the work with the

help of a careful graph. The processes of abbreviation should

be studied by writing out all the work in full ; it will then

become obvious that abbreviation is possible and expedient.

There is no simple way of determining how many real roots an

equation has, but in ordinary cases the graph will give the

necessary hints.

Examples.

1. Given that one root of 2x3+ I7ii;2- 59a;- 120 =
as (-7-7209),

show that another root is — f and verify this by the Remainder
Theorem.

2. Increase the roots of the quadratic equation w^ + Sa;- 5= 0by4
and thus solve it.

3. Solve the equation a;' — 5x^ + 2a;+ 8 = 0, given that one root is

double another.

4. Show that the equation a;'* — 2a!^ + 7a;— 15 = has a root about

a; = 2. Prove that, more accurately, it is 2-089, and verify by
a graph that it is the only real root.

5. Show that a root of the equation a;* — 4:X^ + Qx^ + 8a; — 4 = is

•40631. Show that there is another real root.

6. Find an equation of the fourth degree two of whose roots are

3 + V7 and 5 - V'2. Then solve the equation for the largest root

by Horner's method.

7. Solve a;° - 84 = 0.

8. Solve 2a;^ — 2a;2-27a; + 48 = 0, and verify the roots obtained

by the relations on p. 89.



SECTION V

LIMITS. SERIES

• 1 1 1 1
Consider the progression -^ + j +- + ...+ —^

1 1

2
"~ 2'»+i

1
The sum, «., = ~ = 1 - 55 • (p- I*-)

Whatever finite value n has, this sum is always less than 1

.

As n increases, the difference between 1 and /S^, viz. — , becomes

smaller. If, as on pp. 25-6, we choose any small finite quantity,

e, we can make this difference less than e,* by taking n so that

1

2S< «•

1
^°^7

Thus — < f, if w log 2 +log € > 0, ii n > • E. g. if e
'^ log 2

1 20
were --^ and n > . , = 664-3 ,.., the condition is satisfied,

10^" logio2

and S^^^ is between 1 and 1 — -r—^b'

The essential thing to notice is that however small e is chosen

to be, a. finite value of « can be found (by an algebraic process in

this case) so that S^ differs from 1 by less than e.

ice— '^7 .' 3 , „„. .^ ,

In the curve y = — = 4 H ; (p. 80j, it was shown

that as cc increases y tends towards 4. The difference between

3 . 3
V and 4 is less than e, if < e, that is, if « > - + 5. "Whatever

* Throughout this section e means as small a' quantity as can be definitely

assigned, by any mental or numerical process.
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(positive) value is assigned to t, « can be chosen so that

.y-4 < e.

180
In considering n sin on p. 65, we showed that, however

great n was, this quantity was between 3-1405 and 3-1441.

The difference between the perimeters of two regular «-sided

polygons, circumscribing and inscribed in a circle of unit diameter,

,- 180° . 180\
IS 71 (tan sin j — a (say).

180°
Let 6 be the radian measure of degrees, and let 1 radian

n
1 80= k°, so that 9 = -7-- Then
nk

(Ik 1 ,^ 180°
. 180°s 1 /^ ^ - M 1= (tan sin = -(tan 9— sin 6) <

180 180^ H n ' e^ _^__i^ ff'

180 (p. 70)
(I <

By increasing n we can make 6 as small as we please, the

denominator of the fraction last written as great and the fraction

as small as we please. Hence we can choose a value for « such

that d is less than any quantity (e) assigned.

Hence columns [A] and [B] in the table of polygons on p. 65

can be continued till the difference between the perimeters of the

external and internal polygons is less than e. There is then

180° 180°
a quantity between w sin and Mtan , such that the

difference from either can be made as small as we please by

increasing n. This quantity we defined to be it.

If successive values are given to x in the function =y,

definite values can be found for y except when x — a, when

numerator and denominator = 0. If cc differs slightly from__a

—

H 2 x-^^^
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and — a-\-li. then y = = 2 a + ^. As A diminishes.
a-\-h— a,

y approaches 2 a, and ^ '--' 2 a * can be made < e by taking h < e.

[E.g. 2/ = ^^; a; = 2-1, 2/ = 4-1 ; a; = 2-01, j/ = 4-01

;

X = 1-99, 2/ = 3-99.]

s + 5a; + (?a;^ a x{hA— aB)+x'^{cA— aC)

A + Bx+Cx^ A A{A + Bx + Gx')

_ bA— aB + x(cA — aC)
— 2^ '

so long as x is not zero. "^ +AB+ ACx

As a; approaches zero, this fraction can be made < e by in-

creasing the denominator which contains the term — , unless

A=0. *

T ,
1 rr,,

a + bx + cx^ mfi + bu + c
ljet« = -- ihen —rTri^-r^—

o

7,, unless ««= 0.
«« A + Bx+ Cx^ Ati^ + Bu + C

c
This fraction can be made to differ from -^ by less than f, unless

C = 0, by diminishing u, and therefore increasing x sufficiently.

The results now obtained are written

Lt/1 1 1\ 1 T *4a;-17 = 4,
^2 2- '

•••2»^ ' ^„ x-5

Lt . 180° T t ^ 180°
MSin =

I ^ Jitan = tt = 3-14159 ..

t a;^— «^ T t a + ^a; + ea;^ a

The first is read ' the limit of the function as u tends to infinity

is 1
', and similarly for the others.

* -^ is the usual abbreviation for ' the difference between * regarded as

positive.
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Notice that in these processes we have dealt entirely with

intelligible finite algebraic quantities, and that no hazy ideas as

to the nature of infinity are involved. ' Tends to infinity ' is

merely the conventional way of writing ' becomes greater than

any finite quantity, however large, we like to choose
' ; co is the

abbreviation for the phrase ' as great a quantity as we can

assign '.

In each case the variable (» or «) has been supposed to take

successive values along some definite course, to increase or to

diminish gradually, or to be equal to successive integers, in the

direction of some assigned value, and that the final measurement

of the function is taken before this value is reached, and it is

shown that this measurement can be so taken that the function

diflPers from a definite quantity by less than any numerical

quantity, however small, that we can assign.

The formal definition of a limit is as follows :

If, when X approaches a value x^, f{a;) approaches a value I,

and if the difference between / {x) and I is less than any small

quantity we can assign (e) for all values of x between Xj^ + li,

where li can be determined in terms of x-^ and e, then I is called

the limit of ./ [x) when a; = ajj ; and if, when x is increased

indefinitely, a quantity h can be found so that, when x > h,

f{x)~-^l is less than e, then I is called the limit of/'(a!) whena; is

infinite.

Example. Word the definition for the case when x is negative

and increases indefinitely.

Some Important Limits.

L*r° = if r = 1— d, where d is between and X and

independent of n,* and n is integral.

Let h
—

-. , and .
•

. 1 + ^;
= • • b is independent of n

and positive

* This is ge;

Lt / 1\"
( 1 + - I is not (see p. 123).

* This is generally put less definitely as < )• < 1 ; but it is essential that d

1\".
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However small the value of e, «* can be taken > 7- . and

1
^'

no

Hence by increasing n, (r" ~»^ 0) can be made < e ;

-•. !*?•«= 0.

T Ar" = 0, if r = 1 — d as before, and A is constant.

For let € = A /. However small e, a quantity t' = — can

be assigned ; then, as in the last case, r" can be made less than «'

by increasing n, and .
•

. Ar^ < e.

E.g. if A is 400, and e is taken as—^, then n must be taken so

that r™ <
400

1 1
X 103" J

If T * f (x) = I, then T * Af(x) = Al, where A is a

constant.

For as in last article, f{x)^»^cl can be made < — , and
.•. Af(oc) -^ Al can be made < e.

If S„ = a + ar+...+ar°-i = ^^^^—^MP- 14),
1— r

where r = l— d, 0<d<l and d is constant (independent

t

-r
of n), thenL S„ =^

= j= A, a, constant quantity.

* A smaller value of n would serve ; see note on p. 106.
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.".
'^n.—

^''" "^ e,iin is sufficiently increased.

[This is generally, but vaguely and erroneously, deduced in the

elementary algebra of finite quantities ; where is said to

be the ' sum to infinity ' (a vague and undefined expression) of

a geometric progression,]

Lt A— = whatever constant quantity A is. This needs
u

no proof.

Lt x"^— =0 for all positive constant values of x. Let x
n!

n-» CO

be an integer t, or between the integers i and i+1.
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Limit of a Product.

Let ^1, /j be limits towards which fi{iio), f^i"^ tend as x

approaches the value a.

Then, by definition of a limit, h can be found so that

/i(a + /i)-/j = +ei, and f^{a + h)-l^ = ±1^,

where e^ and e^ are any small quantities assigned.

Let r (x) = fi (x) X fa (x).

Then F{a ^-K)-l^ l^ =f^{a + k) xf^ [a + h) -

\

^
= (^1 + fi) (^^21^2) -kk= ±hh± ^2

h

± fi ^2-

Now assign a quantity e, and suppose tj , e^ to have been chosen

so that €, < —T- • f , and then e, < -—; • e.

Then fi 4 + ^2 (^1 + ^i) < ^j ^i"! whether the signs of fj, fg ^^'^

like or unlike, F {a^h) ^l^l^< i;

x-> a x-> a X -+ a

It is well to illustrate this theorem numerically.

Consider the quantity ^ ,

sin 29 = 2 - Kj A(20)*, where k^ is a proper fraction (p. 70),

sin 2 9

9

sin 3 9

- 2 = - f
1
(say), where f^ = 2 k^ . 6^ < 2 6^,

3 = - 63, where eg < -^^e^,

sin29.sin39 /o \ /o \ e o /o \

g2
=(2-fi)(3-e2)= 6-361-62(2-61).

Assign a quantity e, say—^ • Take 3 61 < -—
-—j, ; this will be

secured if 9 < y=. • Take
103 /12

^2(2 - O < ^—TTTe. ^2 < ..in6_io.ini2 ;
tl"s will be

secured if 9 =

2x 10«' 2 4x 106-12 X 1012'

1

6 X 10=*
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_,, „ sin 29. sin 39 1 .„ ^ 1
Then 6 — < --j , if 9 <

2 10"' 6 X 103

t sin 20. sin 3 9 „ „ T tsin2 9 sin 39Ltsin29.sin3 9 „ „ T '^

-^ = 2x3 = J^
.0

»''
sVo y «

Example. Obtain the corresponding theorem when

The theorem can be extended to any finite number (f) of

factors, by choosing tj^, t,^, ... (^ each < i—j < with sufficient

allowance for products of the e's.

Hence J_^ {f(x)}'= jj^ f(x)[. where t is a positive

integer. ^'^^ ^~'^

t cannot be increased indefinitely, for then an t would have

to be found for f(x) indefinitely less than the e ultimately

assigned.

Limit of a Sum or Difference.

With similar notation, if F{x) =f^ {x) ±f^ {x), T */(•«) ^iff'ers

from ^1 + ^2 ^y Isss ^^^^ ^1 + ^2' *^^t is, by less than e, if

^1=^2= 2'

L*F(x) = Ltf,(x)±Ltf,(x),t

x-> a

and by taking ej = e2 — •• Tj the theorem can be extended to

any finite number of terms.

Examples on Limits.

1. Find the variable n or x so that (i) e =
, (ii) e = — . .ind

find the limits of
100^^ 10"

, ,, Sai^ + SiK, „ ,
, ,, l-cos9 ,. „.

^^ 4a;2-2a
^''"^°^"'^'^~^'")' ^'^

~
g^ °^'

sin 9 . sin -

20"
(/) seo9-cos9(9->0), {g) ^{n-^'x,).

Also draw the graphs of (c), («), and (/) in the neighbourhoods
of their limiting values.
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As example of p. 103, let us choose n so as to make— <
n\ 1000

4^ _ 4^ 4 4 32 4 4 32 1

n\~ 1 .2. 3.4 '

5
'

6
" ^ "s

' I' B'" ^ T '

(l + i)»-4

32 1

< — -, TT—J (as on p. 102); and this is

< -^ if 32000 < |ra-3, ifw> 42672.*!

/ 1\"
2. Find the difference between f 1 + -j and 2-7183 when w = 1, 2,

10, 100, using logarithms.

Series and Convergency.

If it.^, Wgi «3,...«<... are algebraic quantities, such that a

term u^ is a function of t, the other quantities involved being

the same for all terms, then these quantities are said to form

a sequence, and the expression «i + 2*2+"-% i^ called a series.

Ui , expressed as a function of f, is called the general term.

Thus the progressions

a, a-\-cl, ... a + t—l cl, ...,

a, ar, . . . ar^~^, ..., are sequences
;

and fl" + ««""!«+ ... +„C^ «""*»*+ ... is the Binomial Series.

Examples. 1 . Write out the first six terms of each of the series

whose general terms are

^Kc + i,'-l)d ' (")l7^''
R^in(« +

«-f).
(iv)i.x'-i.

2. Write down the general terms of

(i) 1.2 + 2.3 + 3.4+...,

(ii) 1 .2.4 + 2.3.6a;+3.4.8a;2+....

Definition. Let «^ be any function of t, and let

then if T "„ i^ ^^^'^ ^^' finite, and unambiguous, the series

* Note in these and similar cases the object is to show in the easiest way
that a value of n can be found which gives the result, not to find the

smallest value of n. Here n = 15 is in fact sufficient.
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S = «j + ^2 + • • • + ^n + • • continued indefinitely is said to be

converffent.

Thus, if t/( — ar*, where r = \—d, d being a proper fraction,

it is shown, p. 102, that J_^ "^n
=

:; ', •' the geometric
n-> CO

progression is convergent for such values of r.

If K^ = (_!)<, S = -\ + l-l + l..., and S„ is or -1
according as n is odd or even ; this is ambiguous.

\i u^ = a + [t— \) d, d being positive and finite, then

%
S^ = -^{2a + n-\d)

and increases indefinitely. Such a series is said to be divergent.

Let S be the limit of a convergent series ti-^ + ti^+ . .
.
, and let

•^«= %+i + ^n+2 + • • •; then7i^„is called the remainder after aterms.

Since T /S„ = <S, we can by increasing n make the difference

between S and iS„, that is 7i',j, as small as we please.

)l -> QO

Conversely, if T -S,j = 0, the series is convergent ; for S^

differs from its final value by i2„, which approaches zero as ti

increases ; that is, the final value of S^ is between an assigned

value S^> and 8^^, + e, where e can be made as small as we please.

Hence S^ can be confined within as narrow a margin as we please

and has therefore an unambiguous finite limit. We cannot

always determine this limit ; that is, we cannot always express

the sum of the series as a definite quantity, even though we

know that the limit exists ; but we can obtain as close a numerical

approximation as we please.

E.g. consider the series aj+-~ + — +... h... wliere < a? < 1.

n+\ m + 2 " n+1^ '"' (n+l)(l-x)

where x = ^, t = ^oVo'

1 \'*+^
, V 9 1 .„„ 1

Take the case where k = 3^, e = ^-^qq

if n > 2.
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Hence S is between /Sg = j^ + 2^ = -105 and 'Sj + yoVo' >•*'•

between -1054 and -1063.

As close an approximation as we please can be obtained by a similar

process.

The ratio test of Convergeney.

It is evident that a series consisting of positive terms cannot

be convergent if eacli term is greater than or even equal to the

preceding. E.g. 1 + 2 + 3 + 4 + ....

It is necessary to test the converse, that is, to find whether

a series is convergent if each term is less than the preceding.

Dealing only with positive terms, let -^^ = r^ , that is, let

r^, r^ ,,, 1\ . . . ?„ be the ratios of successive terms to those next

before them.

Then u^ = u^i\, «, = u^f,^, = u^r^1\, ... m^ = u-^f-^r,^ ... rj_j, ...

*'«+! ^^ "1V2 ••• '"»•

^n — %+l + "k+2 + • •

= "n+l (1 +%+l + ''m+l ''n+2 + '')i+l ^n+2 '*n+3 + •••/•

If the greatest ai the quantities rj, rg.-.r^ = 1— d = r,

where d is a positive proper fraction, independent of n, the

series is convergent.

ForA <««« (!+'• + '' + -) <'^(P- 102)

\-r d

.•. T M^ = \_^
-.- • ?" = 0, d being finite and independent

of » (p. 102).

Thus 1+x +— + ...+
-J
+ ... is convergent if < a; < 1 and 1 -x

is finite.

For rj = a;, r^ = -^ , the greatest ratio is

.

x, which satisfies the

condition.

Examples. 1. In the series just named, find n in terms of x so

that B„ < —5 , and evaluate the series to the 5th decimal place when

X =
-JQ.
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X Jc^

2. Show that -

—

- + -— + . . . is convergent if < a; < 1, find n so
1 . J a , o

that £^ < —J when x = |, and then evaluate the sum of the series

to the fourth decimal place.

Extensions of Batio Test.

I. If the condition r^ < r, where r = 1 — d, holds for all the

terms except the first *, where * is a finite integer, the series

is convergent.

For let R^ = S', S^S^ + S'. S^ is finite.

Then S' is convergent ; let its limit be L Then

and S is convergent.

Example. 1 +a5 + — + '— + ... is convergent if x is any finite

positive quantity.

For, let 05 = s — 1, an integer, or be between s—1 and s ; then r^ = -

and is less than 1 by the finite proper fraction , and

r, > r^+i >r^+^....

II. If I ,
—^^^^ = 1— d, where d is a positive proper

fraction, independent of n, the series is convergent.

For a finite value of m can be found so that -2L±2 — i —^4.^^^

where e^ is less than as small a quantity as we choose to assign,

= l—d', where d' is a positive proper fraction. (E.g. if ^ = ^,
and fj := xo'o! " — To'o'-)

From and after the terms so chosen the ratios are all

between 1—d' and 1—d, and the series is convergent by the

previous case.

Examples. 1. Show that ix + %x^+... + —rs'+... is con-
2 3 t+1

vergent if x is between and 1.
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2. Show ^x + ^x^+ ... + x*+ ... is convergent if a; is between

and 1.

3. In the second example, work through the proof when x = ^g,
finding d and d' when e is taken as lO"".

If S = w-^ + u^+ ,,.-\-ti^+ ,,, is convergent when all the terms

are positive, then &' = tt^±V2±...±...±1l^±... is convergent.

For^'„= + Wjj^j + ?/^^2± . . . and is between ( + m„+i + u„+2 + •••)

and -(z/„+i + w„+5,+ ---),i-e- between +B^.

But L*^„ is by hypothesis; .-. T *^'« = and ^ is

n-+ CO n-* CO

convergent.

The most useful case is when ^ = Wj — Wg + %—••
Note.—S' may be convergent though S is divergent.

Summarizing the results so far :

If + Jl,
"""""^ = 1— r^j where f? is a positive proj)er fraction,

/S is convergent.

It is easily seen that if -^ > 1 when i is finite, the series
«(

Lt 7^_m+l
-j^ ^

the series is ambiguous or divergent; but we are only concerned

here with establishing the co?ivergency of the series we are

about to use.

A common mistake is to forget that d must differ finitely from

zero. Neglect of this readily leads to absurd results.

-,8=1 + -- + -+...+ -Kg. li ut
= - , S = 1 + -_^- +-+...+ - +...

«*4-, i . 1n+i = 1-
Uf i+1 t+1

which is < 1 if ^ is finite.

But no quantity can be found so that -^^ is always less than

1—d, for -^ tends to 1 as ^ is increased. I ,
-^ = 1.
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In fact 5= l+i + (| + i) + (i + i + i + |) +

> 1+^ + 1 +^+ continued indefinitely.

As an exercise in method the following two theorems are given

:

If /S = Wj-Mj + Mg- ..., where u^> u^ > u^ >..., a.\l the letters

stand for positive quantities and T «,„ = 0, the series is convergent.

Fur li^ = K+i-M„+2) + K-3-%+4)+--- and is positive,

Example. l-i + i-i+ - is convergent.

If /S = ltl + «2 + "3 + ••

and (S' = Uj + U2 + i'3+ ...

and if — = A^, then if S is convergent and k^ finite for all pairs of

terms, and all the terms are positive, 5' is convergent.

For ?-^ = '"n+i + '^n +i+- < the greatest of the ratios A-„+i, ^„+2- •

i^n %+i + '">i+2+ •••

(pp. 17-18.)

Let the greatest ratio, finite hy hypothesis, be k

k
But -ffi„ can he made less than e' = - where t' and e are as small asn J

we please. .-. ll\ can he made < e. .-. T R'^ = 0.

CoEOLLAKY. S' is Convergent if some of its terms are negative and

—j + is convergent if r is
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Applications.

I. Let v^^^ = '^-jj^- x^, using the notation of p. 19,

J c, - m(m—l)„ [ml, ,and S=l+tnxA ^^ -ii:^+... + -—•x'+.,.,

where m is any finite quantity.

This we already know as the binomial series when m is a

positive integer.

^'t+i _ W^(<-1)! JBi^ m-t+1
^ _ /^ ^+1n ^

.

lit
~

[m]t-,tl ' xt-^ ~ t ''- V t ) '

.' — J^ -^ = 1^ (l —\x = X, m being finite.

t VI t I GO

The series is therefore convergent when \x\ < 1.

If
I « I > 1 the series is not convergent.

If a; = + ij we do not know by this method whether the

series is convergent or not.

11. S^ = x + \x^ + lx^ +

Convergent if |a;i < 1.

Then S^ = x— ^x'^+^x^—.,. is convergent if 1 > a; > 0.

li X = 1, S^ is divergent and S^ is convergent (p. Ill ).

1X1.5=1--+-^... +(_i)»4^... (Seep.241.)
2! 4! ^ '' (in)

_ T t 'Vfi _ T * ^^" (2»-2) ! _ T t _fl^ 6 ^
-L' w„ ""-L' (2»)! e2»-2 "-L' 2«^2?i+l~ '

whatever finite value 6 has, and ^5' is convergent.

Similarly, 5— — + ——... is convergent.
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Examples.
1. Show that1111 1^1 1 n 1

i?
+ 22+32+i2+--<i2+2x2a+4xp- + 8xp...

and is convergent.

2. Show that Ti + ^+--'+7i+-is convergent if /j > 1, and,

by comparison with ^ + |^+ ... (p. Ill), is divergent when p = 1 or

1 > ]}.

3. Km, = -. -r—, , series is divergent.
' a^-{i-V)d =

4. If Mj =
iWf + 2r

^®"*^ ^^ convergent if |:tj| > 1.

Multiplication of convergent series.

Let S = j/j + "2 +••+"« + • •

and <S' =
«:i
+ i'2+ ... +?'i + ...,

both series being convergent and all the terms positive.

Let S = («i t'l) + (e^i ^2 + u^ Vj) + (2<i
I'.j + j«2 ^2 + «i fa) + . .

.

= n\ + Z^Jj + 2<'3 + . . . + ««'i + . . . .

[To understand the formation of the t«'s multiply Mj + MjO; + tSj w^ + ...

by v-^ + i'2 9; + W3 cc^ + ... and collect terms in powers of a;.]

Write ^2 „ for w-^-k-io^-^- ... w^ „ , S^ for w^ + 2^2 + • • • ''« ' &c.

22„ contains all the terms in the product <S„ 8\ and others

besides.

^in^'in contains all the terms in S^^ and others besides.

[If m = 1, »S'2 ^2 = "l^'l + ("l''2 + «2''l) + '*2'"2 = ^2 + tt2''2'

but Sj = (Sj (S"i + Mj v^ + 1«2 ''i .J

.-. when n is finite, S^^ S'^^ > S^^ > 6'„ S'^.

But /S2„ and S„ have the same limit S, and jS'jjj, j^^ have the

same limit S'
;
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If some terms are negative, their numerical values being as

before, ^^j^— S^S"^ contains the same letters as before, but

some terms are negative.

But n can be taken so that {^in~^n^n) < * when all the

terms are positive.

. . ^2n~^n ^'n ^^ between + e and — e, when some are negative

(compare p. 110).

and ^ = jj2,„=lJ^S„S\ = SS',

whether all terms are positive or not.

Iiemma.

Vandermonde's theorem.

Let m and n be any integers and t an integer less than either.

Then m+m^« = m^t + rrfit-\ • iP\ + mPt-i • n^2 + • • •

+ irfit-s • n^s + • • + »Q >

for the left-hand side is the number of ways t things can be

chosen from two groups of m and n things respectively when
mixed together, while the (« + 1)*** term on the right-hand side

is the number of ways they can be chosen if s are taken from

the n group, and {t— s) from the m group.

' '
t\ t\ {t-\)\' \ {t-s)\' s\

"^'"

Multiply by t\

[m + n]t = [m]t + 1 . [m]j_, n + ...+tC^. [m\_^ [«], + . . . + [n]t

^^^<^'«^* = (^^! (P-'°)-

e.g. [m + wjg = {'m, + n){m + n-l) = m {m - 1) + 2mn + n{n-l)

= M2 + 2M1W1 + H2
= m^ + m{2n—i) + {n^-n}

= n^ + n{2m—l)+ {m^ — m).

If these terms were multiplied out each would be seen to be

a rational integral function of the P^ degree in m.

Now this equation is true for all integral values o{ m > i, that
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is, at any rate, for more than t values. .•. by p. 88 the equation

is true for all values of m. [In other words, the result of removing

the brackets and writing out the terms in full is to obtain

identical expressions on the two sides.]

Whatever value of m we take, a similar argument shows that

the equation is true for all values of n.

.". the equation is true for all values of m and ?/, t being any

positive integer.

E.g. ih - k\ = [ii = *(-!)(- V-) = 2^A.

and m + 3m [ - 111 + 3 [H [ - 1], + [ - ^l
= 4(-4)(-f) + 3(4)(-§)(-i) + 3(4)(-i)(-|)

+ (-*)(-f)(-|) = l + i + |-tf
_ 81+54+144-224 _ 55~

216 216'

Binomial Theorem.

We should not in strict language speak of the sum of an

infinite series, but only of the limit of the sum when the number

of terms is indefinitely increased.

We shall now prove that

Lt ^, m (m - 1) „ [mlf . [mL s

is the real positive value of (l + x)"", when lx| < 1, and m
is any commensurable quantity, positive or negative.

This is generally, but less accurately, written

m (m — 1 ) . Iml, .

Take 1 > x > —1
; then the series is convergent (p. 112) for

all finite values of in.

Let

/

(u) be the limit of 1 + ?w + . . . + '-—ji ic^+ ..., where » has

any value.

f{m,) ^l + m,x+ '"' ^'\ ^K^+...+ ^^x'+...,

I 3
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Then, by p. 113, /(Wj) xf{iii^ = limit of series whose

(i!+l)"'tenn is

( i!! {t-iy. 1 (if-2)! 2!
^"

tx^ { t i= ^ jW« +
Y ['«i]<-i [«ij + • . + «c, [»«i]t_, [^«2], + . . . +

[«22]«f

.

This is true for all finite values of% and m^.

It follows at once that

/(%) x/0«2) x/K) X =/(wi + ?»2 + »»3 + •••)

Evidently,/(0) = 1, /(I) = l+x, /(2) = 1 +2a; + «2.

Case 1. m a positive integer.

(1 +«)'» = {/(l)}™ =/(l + ... to OT terms)

=/(»?) = 1 + »za- + ,„C2 «2 + ^(7^ a;<+ . . . + a,m, (See p. 23.)

Case II. m a positive commensurable fraction = - , where p

and g are positive integers.

{/(f)r=^(f)^4f)x-^ factors

^/(|-f|+...,terms)=/(|xO_

=/(7j) = (1+ a!)P by Case I.

/(-) is one of the $"' roots of (1 +x)P, and, in this ease,

one of the values of (1 + .t)"* =f [m) = l-\-mx+ ,,,.
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Case III. m = — k, where Jc is a positive integer or positive

commensurable fraction.

f{m) xf( + k)=f{m + k)=f{Q) = l.

f(m) = —— = one valne of , f = one value of (1 +x)'^
^ .t{k) (!+«/'

= one value of (1 +«)"'.

If m is integral there is of course no ambiquity.

Hence for all commensurable values of m,

I f{i») = one value of (1 +«)"' when )« is fractional.

= (1 -\-x)™ when m is integral.

The complete proof that the real positive value is always to

be taken is difficult. Its nature can, however, be shown, and

a partial proof given as follows.

/{m) is evidently real if m and x are real. It remains to show

that it cannot be negative.

If q is odd, there is only one real value and that is

positive.

If q is even, there are two equal real values of opposite

signs.

[See p. 3, also De Moivre's Theorem, p. 231.]

Consider (l +a')«, {\+x)^, (1 +x)^, (1 +x)^.

./(ri) ^iid ./(-Ix) are real and positive, /(^-n) is formed in

exactly the same way as these. It is inconceivable that as u

increases through these values (or nearer values, as ^o%x> Jo^o'2)

50^6?) ./('*) should jump from a positive to"^_^a nearly equal

negative value and back again.

Hence the limit of the series is in all cases positive as well as

real, and gives the unique real positive value of (1 +«)'".

Expansions of importance. < a; < 1.

(l+a,)l= l+ia:+ ilfl^ + ... = l+ia;-ia;2 + TL.,3...

{l+x)-i = l-4a; + |K2-3^a;3 + _3_5_y4_
_

(1 -,!)-> =; l+i,-+3-,.2 , S_,.3 4, 35 ,.(
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{1 + x)-^ = l—x + x^—a?+ ... [A geometric progression.]

(1 - a;)-^ = 1 + a; + a;'^ + a;' + ... [A geometric progression.]

(l+ir)-2 = l-2x + 3x^-'ix^+ ... +{-iy{t+l)x^+ ...

(1 -a;)-3 = 1 + 3a;+ 6x2+ ... + (i±lKi±l\^« + . . .

.

Use in approximation.

(1+1^) =1+2°^ 10-8°^ T0-2+16-l0-«-

= 1 + .05--00125 + -0000625.

1st approx. = 1-05, 2nd 1-04875, 3i-d 1-0488125.

From p. 11 1 these approximations are alternately greater and less

tlian (1 + Jg-)2.

.-. v'^ is between 1-04875 and 1-04881,

(1_J^)I= 1-.05 --00125 + ^3,

" ^3 " 16 lo'^
"*"

16 8 10*
"^

16 8 10 10' "'

< — . —d + — + —+...)< < -00035,
16 lO^iV 10 lOj/ 16x900

•'• -^S < -94875 and > 94840.

Examples.

, O, /, X 1 ,
1 1-6 „ 1.6.11

g ,

1. fel>ow(l-.)-=l + -x+--.2+^-^^-^x^+-..

2. Show (a + «:)« = a^ + na^-'^x + , when a > x, and write down

the general term,

3. Approximate to -s/s by expanding (1 -J)^.

4. Find a limit for the error made if ,-4. rri 'S taken as
6(1-^2)3

I (1 + 2(^1 + 8(^2) when dj and d^ are each less than -Jg.

( 1 + d ^^
Show that 1 + md^ — nd^ is a fair approximation for j-

—-~j if (^j

and d^ are small, and write an expression for the superior limit of the

error involved, by considering the remainder after two terms.
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S. Expand ^ in powers of x, and show that its limit

when X' = IS

X

1

2 -/a

The Exponential Series.

The limit of the series 1 + 1+ —:+— +... + — +... is written e,

and that of 1 +«+ — + — +,.. + — +,.. is written E («).

This series is convergent for all real values of a; (pp. 109, 110).

B{\) = e.

Value of e.

As on p. 108, if ^(«!) = S^ + Il^, co being positive,

»" / , X X X
fl + -

!+l M+1 W+2
T, {'

1
HJ X U! \

»" 1
< —; • , when » + 1 > .V.

?*+ 1

When a; r= 1, i2„ < — • -— < -,

~»+l

e can then be evaluated rapidly to any required degree of

accuracy, thus :

•^11 < fYTTT < -00000003.

The sum of the first 1 1 terms will then be correct for e to seven

decimal places.

In finding 5jj it is convenient first to find S^, which gives an

easy recurring decimal : then to take two values for S^^ slightly

in defect, and in excess of the true value, thus :
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1 /Sn > 2-71805555 < 2-71805556

1

S^ = 2

00019841 00019842

5 2480 2481

166666 275 276

041666 27 28

•008333 2-71828178 2-71828183

•001388

•71805555

In the middle column each teim is too small, in the last column

too great.

e = (Sii + A'u < 2^71828186

> ,S'ii > 2^71828178

Similarly, to ten digits e is found to be 2.718281828.

By writing e = 1 + 1 +^[1 +§ {1 +i(l +t 1 +)}] it can be seen

that no fraction ^, p and q integral, can be found to represent e.

For if we multiply by q we still have a fractional value for qe, what-

ever integer q is.

e is therefore incommensurable.

e is, after w, the most important constant in practical mathematics.

Exponential Theorem.*

T t
,

x^ x* x",

n-> »

equals the real positive value of e'', when x is commensurable.

E{o'^)= l+«'i+f^ +••+7: +••'

The product E{x-^ x E{x^) = (by p. 113)

"^ W! "^
(i;-i)!.i

'^'^
{t~sy. ' sl^'"^ ff)^'"\

for all values of ir^ and cc^ .

* Tlie word exponent is used as equivalent to index.
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The ^^"' term is

=
J.

^ by the Binomial Theorem for a positive integer.

t !

It readily follows that 7i'(.rj) x E{x^ x.E{x^) x ...

Case I. When x is a positive integer = n.

e"= {2?(l)}2 = i?(l)x-2'(l)x... to « factors

= B{1 + l + ...'i terms) — E{n).

Case II. When x = -
, p and q being positive integers.

= £(£+!+..., te™.) = j(?x,)

= 7i'(ij) = eP, by Case I.

Ei-) is evidently real and positive.

.. E(-\ is the real positive q^^ root of eP.

Case III. When a; = —x', where*' is a positive integer or

commensurable fraction.

E{x) X E{x') = E (x + x') = E(0)=\,

^ (a;) is always positive, since e^' is positive and their product

is 1.

.". the real positive value of c' = E (x) for all commensurable

values of x, positive or negative.



Missing Page



Missing Page



124 SECTION V. LIMITS

«»'('-J)('-D-(-'^')

>i- '^^-^-.:-^"-'> c...3,>i-'i^(p.H).

1 2.3 3.4

••(^ + «) >^+*'+ Try ^^+-iT2:T*"+r:5:o
*•+•••

2n , ,

+
J-

x'+ ... to « + 1 terms,

x^ X">l+^+_ + ...+ _

|^^(l+a.+ |^+...+ -^, +... to ;.-! terms),
2tt\ '2!

(f,— 2)\

x^ X'

integral value of g.

Now < i^„_2 < e^''.

A'\" x"
1 + - ) < ;r- -^M !. < ;r- '?'") when « is finite.

..L'm-L'0+D">L'£.'>o.

.'. |_^ f 1+ - j = J^ (Fn) = e^3 when a; is positive.

Xi-* r. n -* X

Lt / 1 \^
f 1 H— j = e.

The proof can he modified to give the limit of f 1 — -
)

n , «*
Thus X* -^T, < ;;—;::—^ ' as above

;

(!! il 2n{f-2)l '

.. the binomial expansion of (l ) differs term by term,

*,n
after the second term, from 1 —,«+... +( — 1)" — by not more
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than-—, zr,..., and the affffreffate difTerenee is a fortiori

less than the sum of these terms, i.e. less than r— F„_^
;

•• L*(>-=)"-L'C-«-+(-»"J)
.2

2«

•• L (1-;:) =

>L%^^->«-

e
n

The limit just obtained has an intimate and important relation to

continuous growth by equal relative increments. Thus suppose corn-

s'

pound interest to be reckoned at - per cent, every ntb part of a year

on capital £,C.

The amount at the end of the year is £C(l + ,-j:^) = £C«i<»,

when n is indefinitely increased. This is equivalent to a single in-

crement of J*! per cent, reckoned at the end of the year if

G,m = 0(1 +
j5-J;

i.e. if r = 100log,(l + ^).
(E.g. ifr^ = 4, r = 3-922).

If, then, the aggregate growth in a finite time is known, the

equivalent rate for continuous growth can be found.

This method is the basis of actuarial calculations.

This conception is closely connected with the use of e as the base of

(natural) logarithms.

Example. The population of England was enumerated as

30,807,310 on April 1, 1901, and as 34,043,076 on April 3, 1911.

Find the population at any intermediate date, assuming continuous

growth at a constant relative rate.

[Let n be the number of days from census to census, m from 1st

census to date required, Pj, Pgj ^"d P the given and required

populations. ThenPj(l+-) =P^, Pi(l+-) = P. Eegard-
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iDg a day as infinitesimal, P-^e'^ = P^, P^e'T = P. .-. nlogP
= in — m) log P-^ + m log Pj.

j

Lemma.

If S is the limit of a series Wq + e/ja; + Wg^^ + • • • > which is known

to be convergent when c > a; < 0, where c is some known positive

t S—Un
quantity, then J^.

For ° =
2<i + « (?/2 + W3 « + ?<4 a;^ + . . .) = u^ + x . F, say.

i^ is finite for all values of as for which the series is convergent,

for /iSj , ?«g , and Wj are finite. (F is not independent of x).

If a;i'' < e, i.e. if a? < ^ , which can always be secured, then

S-u.
5 — M, < C

Lt S—Un

.-.0 *

This method is of frequent application.

= loge a, from the last paragraph.

The logarithmic series.

Now write m for x and 1 + a; for a in the last line, and we

have

, /, X T t(l+a;)™-l
iog.(i+-) = L/—^^

—

Lt m—l „ (m—l){m — 2) , [**-!]«-! « n
1.2.3 " -' " "'

m-+0

by the binomial series, if we take \x\ < 1.

Put w, = in first n terms, n finite ; then

log,(l+a;) = a;-- +-+...-(- 1)" -+ _L i?„

3 3 4
-

^ -' M „f:;^o
"
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i2„ contains the factor x"'^^ and the other factor is finite.

.'. n can be taken so large that ^„ < e whatever m is.

When m tends to zero, B„ remains < e, and

loge(l + x) = L*{x-ix'^ + |x3-ix'...-(-l)».ix"|,
W-+ CO

and writing —ce for x,

loge (1-x) ^ L* j-x-ix'-'-lx'-i4^ -...-X",
n )

when 1 > X > 0.

These series were shown to be convergent on p. 112.

Subtracting the second series from the first we have

1 +x
loge j--^= 2 (a;+|a!3 + i.«5+...), whence < 1 . . . . (i)

Write for x, and we have
2«+l

1

1 +
log/i±i = log, ^ .

identically,

~
2 m + 1

- 1 ^
1 1 1

~ ^\2?i + l
"*"

3(2« + l)' ^ 5(2?j+1)5 + ••
J

• •
(ii)

Any of these series can be used for the numerical calculation

of logarithms ; the last is the most convenient after the

logarithm of any integer has been obtained. The following

illustrate the method

:

loge2 = logei^^ 2{1 + ^ + ^, + _1_ + . . .

J
f,o:n (i)

> -69312 (approx. sum of 1st 4 terms)

2 / I \ .

< '69314 + J—^9 (:j

—

I )>
using remainder after 4 terras

< -69316.

log, 3 = log,2 + 2 |i + -i_^ +^ + ...

J
from (ii)

= 1-0986 approx.
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logg4 = 2loge2 = 1-3863 appvox.

log, 5 = log, 4 + 2
1^ + -L. + ...

I
from (ii)

= 1'6094 approx.

loge 6 = log, 2 + log, 3 = 1-7918 approx.

log, 10 = log, 2 +logg 5 = 2-3026 = 2-3025851 more exactly.

logi^ e = , — = -43429448 very nearly (p. 8, iv, &c.).

Then log^ 2 = logjoexlog, 2 = -30103...

logics = log,o e X log, 3 = -47712..., &c-.

By such methods the logarithms of any numbers to base e

(called natural or Napierian logarithms) can be found and those to

base 10 (common logarithms) deduced.

It is to be noticed that the formulae on which logarithmic-

tables (the most important of all aids to practical computation)

depend, involve nearly all the more delicate parts of theoretical

analysis so far considered.

Examples. 1, Obtain the natural logarithms of 1, 2, 3, 7, 10,

correct to 6 decimal places. Deduce those of 4, 5, 6, 8, 9, 11;

and hence obtain the common logarithms of 1, 2, 3... 12.

, , 1 +m u^ u' , 2m
2. Show that log,- = u + —- + -- + ... whereM=

An Important Group of Limits.

We can now establish the following limits :

by the Binomial Theorem where F is finite, = nx'^"^, where x

is any real quantity and n is commensurable. [Compare p. 126.]

JL 7 = Lj 1
= a"- loge a (p. 123).

;,-»o
''

"
"

In particular, \_^
;..o

/'

= e'
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T t log„ {x + /S) -losa^' , T t ^°^« (^ + x)L -^^ T ^^ = loga«L r—

^

In particular, J_^ ;;

1

A X

2 cos (0 + -j sin -

Ltsin(e + /<)-sin9 t t v 2.) "i
, ^^,

-^—J^ =L 1 (P- 57),

. h

=L cos(e+^)xL'_l (p.104), = . . cose.

„. ., , T t COS (5 + /;) — COS 6
Similarly, \_j

, —
A-»0

Lt tan(g + /'.)-tane _T t sin(9 + /<-g) ,

,^_^^
A "-L* /^cos(9 + /«)cos9

^P"
'^'

Lt sin /< 1 1,1 „

.

k (iOB{0 + h) cos 9 cos''

9

Examples. Obtain the limits in the case of sine and cosine from

the formulae of p. 70. Find a corresponding limit for cot 6.



SECTION VI

PLANE CO-ORDINATE GEOMETRY

Introduction.

The method of determining a point P in a figure by the

. quantities x and i/, where « is a distance measured from a fixed

point along a fixed axis OX, and 1/ is the distance MF,

perpendicular to OX, has been used again and again in the

representation of functions. Hitherto, the method has been

used for dealing with 1/ —f{os) when ^ is an explicit function of

X (see pp. 72 seq.), and we have been concerned chiefly with the

numerical values of _y as « varies, and with the numerical values

of X which result in assigned values of y. "We have not dealt

with the geometrical properties of the graphs obtained.

In this section we deal with the geometrical properties of

lines (straight or curved) which are the loci of a point F, whose

co-ordinates are x, y, where x and y are connected by any equa-

tion
; y no longer being necessarily an explicit function of x,

but x and y being of similar significance and equal importance.

To preserve the geometrical properties the units of length on

the axes OX and OY must be the same. The diagrams in

Section V^ , especially that on p. 85, which represents the rela-

tion Zx^—'i.xy— 12« + 10,y-|-35 = 0, should be consulted.

The section on Projection (pp. 36-8) shows how to pass from

algebraic to geometrical properties.

Co-ordinates and Points,

Let P be any point in a plane, let OX, OF be two fixed lines

at right angles, on which scales (with the same unit) are supposed

to be marked from + co to — 00 , is called the origin.

Draw PI/ perpendicular to OX, and FL peri^endicular to OY.
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Then the lengths OM, OL, as read on the scaler, are called the

abscissa and ordinate (together the co-ordinates) of P, and P is

spoken of as the point ' a;, y ', where OM = x, OL = y. In the

figure P is (4, 5), P, (- 3, 6), P^(-5, -3), and P., (2, -4).

If now P is any point in the plane (u-'j, y^) and Q any other

point (ajj, ^2)) 3Dd if iVQ, jS'Q are the co-ordinates of Q, we have

for all positions the following relations :

^2-«i = ON- OM = M0+ ON = MN;

y^-y^ = 0K~ 0L= L0+0K= LK.

[See J/i\' and M.^ N^ in the figure, and work through the statement

numerically.]

2IN, LK axe the projections of PQ (the line drawn from P to

Q, not from Q to P) on OA'and i' respectively.

Let PQ make Z 6 with OX, measured positively.

.'. PQ COB 6 = MN = d:^-ji\,

and PQ sin 6 = LK — y^~y^. (p. 48.)

.-. PQ2 = PQ2(cos2e + sin2e)=(3:,-Xi)2 + (y,-y,)2. (A) (i)

This formula, giving the distance between two points whose

co-ordinates are known, has now been proved for all positions of

P and q.

K 2
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Division of a Line.

Let i? be a point {x', y') in PQ such that -=^ =— If iJ is

between P and Q, m and n are of the same sign. If R is not

Fig. 49.

between P and Q but has such a position as W or i2", m and n

are of different signs.

In any case 11PB, = mliQ,

uPR +mqB=0 (ii)

Let PQ make Z ^ with OX as before.

Then PR cos — af — x.^, &c., as above.

Multiply equation (ii) by cos 6, \

u {x'— Xj) + m (x' — x^) — 0,

Multiply equation (ii) by sin Q,

n {y' -^i) + m {/ -^2) = 0, „ ^^^
Examples. If (ki,?/i), (cc^.^a), (ajg.^g) are the angular points of

a triangle ABC, and D, E, F the middle points of BG, CA, AB, then

the co-ordinates of D are, from (iii),

(B) (iii)

?i±fL»and?^4^ (iv)
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If © is taken in AD so that AG — 2 GD, the abscissa of G is, from (iii),

l...t + 2.K^, + ^3) ^ ^i + ^2 + «'3,^j the ordinate ^l±2^^+j^-
1+2 3 3

From the symmetry of the result, G is also a point of trisection of

BE and OF.

AD^ = ]aji-4(a!2 + »,)i'+ \yi-¥yi + i/3)]^ from (i) and (iv).

.. AD^ + BE'^ + OF'^

= i {G {'«i^+ + ) - 6 (wj a;^ + ... + ...)} + expression in y,

— f {(^'i
~ ^2)* +... + ...}+ expression in y.

.-. i{AD^ + BE^ + CF^) = 3 {{x,-x,)^ + {yi-y,fi + ... + ...

= 3(AB^ + BC^ + C'A^).

Example. If E, F, G, H are the middle points of the sides of

AB, BC, CD, DA, a quadrilateral, then one point P is the middle

point of EG, of FH, and of MN, whei-e M, N are the middle points

of iC and BD.

THE EQUATION OF TEE FIRST DFGRFE, OB THE
LINEAR EQUATION.

AiB + By + c = is the most general relation of the first degree

between x and 1/, where a, b, c are constants.

A C
This may be written ;/ = — x (unless B=0) = mx + i

B B

A C= xtan6 + l; where m= , k = , and d is the positive
B B '^

angle whose tangent is w. Since the tangent of an angle is

capable of all values, 6 can always be found. If B = 0, we have

X — , the equation of a line parallel to OF, corresponding to

9 = ^TT when m. is infinite.

c
If A is 0, we have tan 9=0, and the line is y = parallel

to OX.
^

[If A, B become smaller and ultimately vanish, possible values

of X or // or both become greater and ultimately infinite.]

Cut off OD on 0Y= k, whether k is positive (Fig. 50 «) or

negative (Pig. 50 h).
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Through IJ draw a line making the angle 6 with the direc-

tion OX.

Let P, any point on this line, have co-ordinates x^ = ON,

In all positions, using the convention of directions of lines,

y^= 01 = NP = NM+MP'= OD + MP, where iJiJf meets NP
in M.
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Hence Aai + sy + c = is the locus of a point which moves

on the straight line which cuts OT at and makes the

angle tan~^ - with OX.° B

AX+By + c = is said to be the equation of this line, and to

represent this line.

Thus se— -/3y + 2 -/s = or ^ = a; tan 30° + 2 is line (i) in

Figure 51,

4a!+2y+8 = or ;// =-2«-4 = a;tan 116|°-4is (ii).

Aa! + By+ c meets OX, where ^ = Oata = = a (say),
A

and OY, where a; = Oaty = = 1/ (say).
B

It may be written h -^ = 1, i.e. - + 7- = 1, and
c c a
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Condition of Parallelism.

The direction of the line Aic + B_y + c = is given by

^ = tan-(-^).

Ax + By + c = o and AiX + Biy + Cj = are parallel

for then, if d^ is the direction of the second line,

01 = tan-i(-^) = tan-i(--) = «77 + (p. 51),

and all values of n give the same or opposite directions.

Condition of Perpendicularity.

If, with the same notation, 6-^ = B + ^t:, the lines are per-

pendicular.

In this case tan 6-^ = —cot 6 (p. 47).

• - ^ = -(-x)'i-^- ^^1 + ^=1 = 0-
• • W

The converse is easily proved.

Example. 2a!+32/ = 4 is parallel to ix+6y — 7 and perpen-

dicular to 6x- it/ = 9.

Line through a given point in a given direction.

Let tan"' w be the given direction and («j, i/-^ the given point.

1/ = mx + k is the equation of any line in the given direction,

and ^j = mx-^^-^k if the given point lies on this line.

Eliminating k by subtraction,

y-yi = m(x-xi) (E)

Here x, y are the co-ordinates of any point on the line, i.e. the

current co-ordinates.
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Line through two Given Points.

Let (ajj, j/j), (^j, y^ be the given points.

Let tan~^m be the unknown direction of the line.

Regarding the line as through [x-^, y-^ its equation is

y-y^ = m(x-or^.

It passes through {x^, y^ if

Eliminate m from the first equation by means of the second,

This is most easily remembered as

Line through a given point (Xj, yj) parallel to, or per-

pendicular to, AX + By + C = 0.

Using equation (E), m = for parallelism, -)— for per-

pendicularity.

The equation of a parallel line is then

A(x-Xi) + B(y-yi) = 0,
1 _

_ _

/QN

and the equation of a perpendicular line is |

B(x-Xi)-A(y-yi) = O.
''

The two lines Aa; + By + c= 0, Aja;-|-Bj^ + Cj = intersect at

the point found by solving these as simultaneous equations

T . BC, — OB, ca, — AC,
sriving- X and y. viz. x = — , y — —

*

° ^ ABj— BAj "^ ABj— BAj

Examples.

[/m every case draiv the lines obtained on, a diagram.^

1. Write down tlie equation of the line through (6, 4) (-3, —4),
.and iind its direction, and the intercepts on the axes.

2. Find the equations of the line through ( - 2, 3), (i) parallel to,

(ii) perpendicular to, the line making intercepts 4 and 5 on OX and
Y respectively.

3. If (1, 2) (2, — 3) (3, - 4) are the vertices of a triangle, find the

equations of the perpendiculars from the vertices on the sides, and
verify that the point of intersection of the first two lies on the third.
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4. Ill the same triangle find the co-ordinates of the middle points

of the sides, write down the equations of the lines joining each to the

vertex opposite, and verify that they are concurrent.

5. Show that the line joining the middle points of the sides of

a triangle is parallel to the remaining side.

Perpendicular distance of a point B (xj
, yj) from a line

PQ (Ax + By + O = 0.)

Let M (^y) be the foot of the perpendicular.

The equation of the perpendicular, UM, is

B(«-«i)-A(y-yi)= 0.

Then x/y' is on PQ and PM.

.
•

. ax' + B^ = — 0,

and B«'— Ky' = "ax^ — Ky^

.

.-. (a'''-|-b2)«' = — AC + B^a^j— AB^i

and (A^ + B^) / = — BC + A^y, — ABaJ^

.

.•. (A^ + B^)(a;'— a;;^) = — AC — a^ a;^— ab^j = —a (AXj^ + By^ + c).

and (a^ + B^) {/—^i) = — BC — B^yj — ABa;j = — b (a^j + sy^ + c)

The length BM = \''' {{'v'-iK^y + (/-y^f}

S'
_ ^

AX| + Byt + C
jj

~ V'a^ + b''

Hence the distance of the origin (0, 0) from the line is

c
+
y a2 + B^

E. g. The distance of (2, 3) from 3.r - 42/ = 5 is

3x2-4x3-5 ,
-11

~
732 + 42 t)

The distance, when (as is very frequently the case) there is no

convention as to whether liJ\[ is to be considered as positive or

negative, is simply -JJ-.
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The Area of a Triangle.

Let (Xi^i), {x^y^, (a'3^3) be the angular points R, Q, P
Then in the same notation as the last paragraph,

Ai-ea = ^ . RM. PQ.

The equation of PQ is ^-^^^ =.l!^=l2 .

i. e. X (^3 -^2) -^ (''3- ^'a) + ^'3^2- *2.?'3 = 0-

Comparing with a* + By + c =0

we have , R3f= ± ^1 (^3-ya)-^i(^3-^2) + ^.y.-%y.
.

^(y8-^2)' + ('^'3-«'2)'

But the denominator = PQ.

•• Area == ±^ {.Tj (y3-J'2)-yi(«a-.r2) + *-3y2-^2?'3}

= ±l{«'2j'l-»'iy2 + »3y2-«2y3 + ^iy3-«3yi}-

The number of units of area is the positive vahie of this

expression.

The Angle between two Lines.

Write the lines in the form y = wx + k, y — m'x\k', where

m = tan 0, m' = tan Q'

.

Then tan(0'-e)

tan 0'— tan 9 , ,„, m'—m= ; ^r—

;

-^r (P- 58) = , — tan ex, say,
1+tane.tanfl'" ^ 1+mm' ' ^

and 6'— 6 = UTT + Oi.

This gives the angle through which the first written line

must be rotated in a positive direction to become parallel to the

second.

The tangent of the acute angle between the lines is the

m'—m ,^.
positive value of -\ -, . . ( 1

)

~ 1 +mm ^ '

It is easily shown that this may also be written + ^—^
y

AA -f- BB

Example. To find the angle between

3x+ iy = 5 and 2a;-3i/ + 2 = 0.

These are «/ = - 1« + f and y = ^x+ |.

Un{d'-9) = .\}~jI = V- = tan 701°.
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The required angle is n. 180'- + 70i°= 70|° or -ISO^+rO^

= - 109i°, or 2504°, &«•

The figure explains the apparent

ambiguity of the result.

No progress can be made in this

subject till formulae (A) to (I) are

thoroughly understood and remembered.

We give the following as an example

Fio. 52. of method.

To find the locus of a point which

moves so that its perpendicular distances from two given lines are

equal to each other.

Let (f, 7J) be the co-ordinates of the point in any position. Let

Ax + -B.y+c = 0, a'x + s'y + c' = be the given lines.

The condition is ± ^i±^^ = + ^^4£^^'from (H).
^/~^+ B^ Jk = +B'

II. > ,. ., ,. Aa; + BW + c A'aj + s'y + c'
.•. (i, y) lies on the hne = —

.
i

., ,. Aoj + Bw + c A'aj + B'y + c'
or on the line = - -^—— ,

a/a2 + b2 v'a'2 + b'2

and these two lines are its locus.

Conversely, every point on these lines satisfies the given con-

dition.

From elementary geometry it follows that these lines are the

bisectors of the angles formed by the first pair.

The expression Aa;'+ b2/'+ o is shown to be of the same sign as C,

when P (x, y') and the origin, 0, are on the same side of the line

Kx + 'By -k-c = 0, and of the opposite sign when P and are on

opposite sides, as follows.

If the ordinate NP meets the line in K, then, having regard to the

convention of signs of lines,

i^.ON+B.NK+Q = 0.

.-. k.ON + -b{NP + PK) + c = 0.

.-. -b. PZ = aw' + b^' + c.
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But if the Hue meet Y in L, OL = :

B

PK Ax'+By' + c
' OZ

^
c

Heuoe Ax' + ej/' + c and c have tlie same sign or not, according as

FK and OL have the same signs or not, i. b. according as PK and OL
are drawn in the same direction or not.

Fig. 53.

Of course if P is on the line ax' + By' + c is zero.

If now we write the perpendicular from P as + _ Ji — , and
Va^ + b^

take the positive root in the denominator, it is easy to deduce that all

perpendiculars so written from points on the origin side of the line

have the sign of c, and others the opposite sign.

Examples.

1

.

If the perpendicular from on a line is of length 2> and makes
an angle a with OX, show by methods of projection that any point

(k, y) on the line satisfies the equation x cos a + ^ sin a = 7), taking

care that the proof applies for all values of a.

Show also by projection that the perpendicular distance of a point

{xi i/j) from this line is Kj cos (X + y^ sin a -p, and deduce formula (H).

2. Find the equations of the two lines through (3, 2) that are

inclined at 30° to the line 3x — 5y = 8. Draw the figure.
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3. Explain the results obtained by using (I) to find the angles

between 2a;+33/ = 4 and 4a! + 6y = 0, and between 3a; = 5y and
ox + iy = 0.

4. Write down tiie equations of the 6 bisectors of the angles of the

triangle made by y = 0, a; = 0, and 3x+iy = 5. With the help of

a figure find the co-ordinates of the inscribed and escribed circles of

this triangle.

5. Find the locus of a point which moves so that the sum of its

perpendicular distances from three given straight lines is constant.

Change of Origin, the Axes remaining in their original

directions.

It is frequently necessary to use co-ordinates measured on two

different sets of axes in the same analysis.

Let x, y be the co-ordinates of a point T? measured on OX, OY.
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sents the same locus, the equation now involving «', y' instead

of m, y.

While we arc dealing with a:'
,
y' we can suppress the ' for

convenience and write the equation /'{(/< + »), (k-\-y)} — 0. The

equation is then said to he referred to the new axes, OAj, J\.

Thus if // = 2, X- = 3, the line 2a} + 3y =z 5 referred to the old

axes, becomes 2 (a; + 2) + 3 (y + 3) = 5, i.e. 2 » + 3,y + 8 = re-

ferred to the new.

As in Figure 54, this line cuts the old axes at a; = 2-|, 3' = !§,

and the new at —4, — 2|.

THJ:: EqVATION OF THE SECONU BEGllEE.

The most general form in which the equation of the 2nd degree

can be written is

ax^ + 2 hxy + hy"^ + 2gx ^2fy + c = Q,

where a, I, c,J\ (/, h are any constants.

[The apparently arbitrary order of the letters and the intro-

duction of 2 in the coefficients do not diminish the generality,

and, as will be seen in the sequel, are convenient.]

We have already used the particular cases when 6 =
(pp. 83-5) and when /^ = i = (p. 75).

We will first take the case when li — 0, the other letters

having any values. /< is introduced again on p. 175.

TAe equation ax^ -1- by^ -f2gx-f-2fy-fc = 0.

This may be written

unless a or b is zero.

Let c be the point (—— > — 4-) •

As on p. 142 transfer to c as origin.

The equation referred to axes through c, parallel to the

original axes is

i.e. ax' + by^ = t+-tl_c.
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This may be seen from Figure 55. If OH = - ^

a

u a J

Y

Fig. 55.

The last equation can be re-written,

Aa'^ + B/ = 1, unless — + -, c — 0,
a u

where C is now the origin.

The Circle.

Case I. A and B positive and equal. (Then a = b.)

Let r- — —, r real but not necessarily rational.
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The equation becomes a? \-y'' = »^-

This is evidently CP^ = r'^, and tlie locus of P is a circle,

radius r.

Example. Let the original equation be

2x2 + 22/2 + 8a! -16?/ +25 = 0, referred to OX, OY.

This may be written

2(w+2)2+2(2/-4)2 = 2 x22 + 2x 42-25 = 15,

that is, 2x2+ 2 y-^ = 15 i-efen-ed to C'A'i, CY^, where (7 is (-2, 4)

a;2 + y2 = 1^5 _ (2.74, ..)2.

This circle is drawn in Figure 55.

The equation then represents a circle, centre ( — 2, 4), radius

2.74....

It is otherwise evident that

(2.74...)2 = (7P2 = (^_(_2))2 + (2/-4)2, (A) p. 131.

i.e. 2a;2 + 22/2 + 8a;-162/ + 25 = 0, is the equation of a circle, centre

(-2, 4), radius 2-74....

The Ellipse.

Case II. A and B positive and unequal. The curve is then

called an ellipse.

Let A = -s^ and B = ^ , where u and (3 are real, but not

necessarily rational.

^ 4. l! - 1

a2
"^

P2
- ^•

\y\ 5" P. or a2 would be negative. 1«] > a, or y" would be

negative.

Mark the points A (a, 0), 5(0, P), ^'( - a, 0), is' (0, - P) Fig. 56.

Then the curve is entirely within the rectangle formed by

lines through A and A' parallel to CJ, and through B and B'

parallel to GX.

The longer of the two lines AA\ BE' is the transverse or

major axis, the shorter the minor axis. A, A', B, E' are the

vertices, C the centre, and CxL, CB the semi-axes.

If any point P (a'i ^i) satisfies the equation, then I\ {
— J\yi),

1<35 ti
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P^( — iOj^ _^j), and P3 (a?! —^1) also satisfy it, since only the

squares of the co-ordinates are involved. The curve is then

symmetrical with regard to both CX and CF.

If «! = CM] y^ - MP, we have

5^ _ «i2 _ (a-a;^)(a + a;^)

Following the convention of signs of lines,

JiP2 {CA - CM) {A'C+ CM) _ A'M. MA
CB^ GA^ CA""

[lu the circle the correspoDcliug property is MP^ = A'M . MA.]

Example. 1 Gk^ + 9f + 64a; - 72y + 64 = 0,

16 (x+ 2)2 + 9 (2/ -4)2 = 144

1.
3 / V 4

Centre ( — 2, 4); ieuii-majov axis 4; semi-minor axis 3.

The curve is shown in Figure 55. The vertices on the minor

axis arc called B, B', as is usually done.
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The Hyperbola.

CASJi III. A and B of different signs. The curve is then

called an hyperbola. [If A and B are both negative there are

no real values of {x, y).]

Let A — -^, B — — -J, where a and P are rtal.

^ _ ^ - 1

I

iC
I

< u, or /'' would be negative. The curve is entirely out-

side the lines through A, A' parallel to CY, where A'C— CA — a.

y can have any value from -co to +00.

The curve is symmetrical with regard to CX and CY.

Let Kj (CM) be any positive value of x greater than a.

Draw the line - = ^ (C'Q), and let Q be [x-^ y^, where

^2 = ~
'*'i
= ^iQ, iiud y^ is positive.

Let (it'iyi) ^^ ^'^ oti the curve, yj being positive and = J/P-

Then Mq^-MP^ = yi-y-,^ ^ (^ *i)'-P'(j' " = P'

PQ = MQ-MV = -^ ^ MQ +MP
As CM and .-. MP and MQ increase, P§ diminishes indefi-

h 2
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nitely, Q remaining above P. The curve therefore approaches

the line CQ, becoDaes indefinitely near it, but never crosses it.

From the symmetry of the curve a similar property appears in

each of the four quadrants, as in the figure, twice with refer-

XV so V
ence to the line - = ^ and twice with - = — ^ • These lines

a p a p

- = + ^ are called the asymptotes (see p. 147) of the curve.
P

A'A is its transverse axis, A, A' its vertices, C its centre. If

a = p, the asymptotes are at right angles, and the curve is

called a rectangular hyperbola.

Now f^x^ (x-o.)(x + ^)

MP^ _ (CM-CA)(A'C+CM) _ A3I. A'M

where CB, CB' are cut off CY, CY' = p.

Lines through B, B' parallel to X'X evidently meet the lines

through AA' parallel to ) 'Y on the asymptotes.

It is easy to show that ^ + 52~ ^ '^^ hyperbola with trans-

verse axis B'B, and the same asymptotes as -^ — -^ = 1.

These curves are said to be conjugate to each other.

Example. Find the centre of the curve

9a;2_ 162/2 - 36k -128y = 364,

and trace it, and show that its conjugate is

9K2-16//2-36a;-1282/ = 76.

(Wi'ite the equation referred to the centre and then transfer back to

the first origin.)

The Parabola.

Returning to the equation ax^ + i^^ + 2gx + 2fy + c = 0, take

the case where « = 0.

Then b{y+-^') =-2gx-c+£r-.

/ f\^ 2^ (
c P \
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Refer to parallel axes through a point A whose co-ordinates are

and the equation becomes

ff
„ —

I
^ — '^P^' where p — — ~-

This curve is a parabola ; A is its vertex, and ^Xj its axis.

Example. 3y^-l3x-12y-27 = 0,

3(2/-2)2 = 13a; + 27 + 12,

(y-2)^=¥(^- + 3).

Referred to (-3, 2),

y^ = -^-x, where AX^,

A Fj are the axes of co-

ordinates. X must always

be positive, and the curve

lies completely to the right

of^Zi. (To the left,if ^

and b had been of the

same sign.)

It is symmetrical with

regard to AX-^.

Cut o« AS =p =i|.

]Sfp2 = y2 = iAS.x = 4AS. AN, itNP is the ordinate of a point

on the curve.

AX^ is called the nxis of the parabola.

F

K
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If in the equation on p. 143 — \-

-

— c— 0, the cnvve is

If a and h are of the same sign no points (except 0, 0) can be

found.

If a and I are of opposite sign, we have

y -±\/-r"'
a pair of straight lines, asymptotes of the hyperbola

where k is any constant.

We have used the terms ellipse, hyperbola, and parabola with-

out exact definitions. These are given in the next paragraph.

Examples.

Find the centre, vertices, asj'mptotes, and the equations and lengths

of axes of the followiug curves and draw them :

1. a!2 + 2/2 + 4a; = 0. 2. 9a;2 + 25^/* = 225.

3. ^x^-ihy^ = 225. 4. 25a;!' -9^" = 225.

5. 4«;2 + «/2 + 8.'«-10y = 0. 6. S.-c*- IG^/' + 15a)+ 30 = 0.

7. 4a;'' + 8/ +12?/ = 17.

a; li

8. Show that all the curves-^ — 55 = ^ have the same asymptotes,

when a and P are fixed and It is variable, and that they are con-

jugate in pairs for equal and opposite values of k.

9. Show that the expression Ax'^ + By'^ — 1 is positive or negative

according as the x 'tf is within or without the curve Aas^ + B?/^ = 1.

Explain the result when A and B are of opposite signs. Obtain

a similar theorem for the parabola.

roeus and Directrix.

Definition. If a point P moves so that its distance from

a fixed point bears a constant ratio to its distance from a fixed

line, its locus is called an ellipse, parabola, or hyperbola, according

as this ratio is less than, equal to, or greater than unity.

The fixed point [S) is called the/bc-«,<f, the fixed line {KF) the

directrix, the ratio (e) the eccentricity.
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If PF be the perpendicular on to the directrix, SP = ePF.

^\K

y'

z>\

Hyperbola

Pig. 59.

We shall now show that the curves obtained from the equation

ax^ + bf + 2ffx + 2fi/ + c=0 all satisfy this definition and that

the names used in the last section are in accordance with it.
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I. When neither a, h nor — + c is zero, we obtain the

equation Aa;^ + B^^ = 1

.

If A and B are both negative no real points are obtained.

Let A be positive,* and equal to —^ ; and if B is also positive

let A < B.* "

Let e = the positive value of \ .go thatV B '

B B

A.z-2 +B/= 1 = Aa^

Divide by B, {\-e^){x^-o.^)+f = Q,

2

Lat S, S' be the points (0, ±ae), and KF, K'F' the lines

X = + - , where K, K' are on XX'.

Let P be any point on the locus and PF, PF' perpendiculars

on to KF, K'F'.

Then the equation just given is, when the upper signs are

taken, SP^ = e^PF^, SP = ePF, and when the lower signs are

taken, /S'P^ = e'^PF'\ S'P = ePF', SP and PF being taken as

positive lengths and e being positive by definition.

The curve may then be traced either with S, KF or with S',

K'F' as focus and directrix.

If B is positive, and = —^ , we have the curve -2 + ^ = 1 of

p. 145, and e^=l ^, t; < 1. The curve is an ellipse.

1 iT^ 7/^

If B is negative, and = — — we have the curve -5- — ^ = 1
p^ a' p^

of p. 147, and e^ = I + -^ , e > 1. The curve is an hyperbola.

* If A is negative and B positive, or if A and B are both positive and

/ ^BA > B, the same analysis would be correct with c = v 1 — -r- and with

the foci on the axis of 3/. If A = B we have a circle and e = 0.
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If the line through S parallel to KF meets the curve at B, B',

BB' is called the latus rectum.

SB=zeSK=e( ae^ in ellipse, = e(ae—
-J in hyper-

P^ .

bola^ = — in each case.
a

In the ellipse SP = ePF ^ e {CK-CN), where NP is the

ordinate of P, ~ ^
( x\ = a — ex,

and S'P = ePF' = e (- + a;) = a + ex.

.-. SP + S'P = 2a = AA' and is constant, where A, A' are

the points ( + a, 0).

In the hyperbola SP — e (x ") and S'P — e (x-\— )

,

and S'P— SP = 2a = AA' and is constant.

It is easily shown that AS . SA' = P^ in both curves, and that

S£ = a in the ellipse, where

£ is (0, P).

II. When a (or i) is 0, the

equation

y^ = ipx (or x^ = ijjj/)

is obtained (p. 149).

Let S be (0, p), and £F be

X = —J).

Then-Si^^^ (x-jjf+f
= {x—pY+ 4px = (x+p)^

= PF'-.

SP = PF.

The curve is therefore a

parabola, (e = 1.)

A is the point (0, O).

If x—j), 1/ = ±2p, and

the latus rectum, BB', is 4p.

III. If \- '-, c = <S and A' coincide, and the locus
a 6

I

becomes the lines ^ = ± » / -^g— • x, the limiting form of an
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hyperbola when its major axis tends to zero while e remains

constant.

The following geometrical investigation shows that all these curves

can be obtained as plane sections of a cone. They are therefore called

conic sections.

Let A'VA-^D-^he a symmetrical section through the vertex V of

Fio. 61.

a right circular double cone. Let VM be its axis, 6 its semi-vertical

angle.

Let A A' be the line of symmetry of any plane section which cuts

VD-^', FZ>i on the same side of V.

Let P be any point on this section, and PN perpendicular to AA'.

Elementary solid geometry shows that FN is perpendicular to the

plane B{YB-^^ and that the section through NP perpendicular to VM
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is symmetrical and circular. Let the last-named section cut D^'VD-^

at D and D'. DD' passes through N, and is a diameter of DPD'

;

andPJV«= DN.ND'.

Let (^ be the angle between AA' and VM.

Then
-^^'^ = r^' ^ _ g'" C' + 4>') sin(</'-g)

^^ AN.NA'" AN' A'N" costi cos 9

= 2-a—^(P- 60) = 1 ^ = 1 -e^,
COS'' 9 ''^ ' cos^ 6

where e< 1 since cj) > 0.

This is a property characterizing the ellipse (p. 150).

Let A^Aj' be the line of symmetry of a section cutting ii/F pro-

duced and FZ)i, and let ^-^ be the angle between A-^'A^ and VM.

Then,as before,-^:^,= ?^, ^ ^ sin(a + ^jV^i^^-4,

)

Mii\'.i\'^i' A^X Ai'N cos^e

=
2 a ~ ^ = «^ - 1, where c > 1, since 8 >

(f).

This is a property characterizing the hyperbola.

Let the line of symmetry of the section be A^N parallel to VA'.

n^N
A^N A^N

But ^ and Dj'N are constant throughout the section.

.-. PN^ X A 2N and the curve is a parabola (pp. 149 and 153).

All eccentricities can be obtained from up to sec 6 (when (^^ = 0).

Parallel sections are similar and all sizes can be obtained. If the

section is through V, we have a pair of straight lines, i.e. an hyper-

bola with vanishing major axis.

rrom pp. 150-3 and 154-5 it is seen that the parabola is

intermediate between the ellipse and hyperbola. It can be

obtained as the limiting form of either as follows :

The ellipse referred to a vertex is

(i--a)2 f
- -I- — — 1

„2 ^ 02 — '
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that is, /^ = 4ji?«ri — —
-j, where 2p = —

(the semi-latus rectum).

Now increase the major axis (2 a) indefinitely, keeping the

vertex and the length of the latus rectum unchanged. The

equation tends towards and ultimately becomes ^^ = ipx.

e^ = 1 - ^ = 1 - ^ and tends to 1.
a.^ a.

[x + a)^ y^
If we start with the hyperbola ^

—

^ §2 = ^> ^® obtain

the same result.

INTERSECTIONS OF THE EQUATIONS OF THE FIRST

AND SECOND DEGREE.

We will take the forms y = mx + k for the line, A«^ + B^^ = 1

for a central conic, distinguishing -^ ± p = 1 for the ellipse

and hyperbola, and y'^ = ipx for the parabola.

y = mx + k meets Ax"^ + "By^ = 1 at points whose abscissae are

given by the quadratic equation A«^ + B {mx + kY = 1, obtained

by substituting for y,

(A + Bw2)«;2+2Bw/iiB + BF_i _ 0. . . . (i)

The roots are real if (2 Brnkf - 4 (A + Bw/.^) (B/i^ - 1)< 0,

if A + Bra^-ABF < (ii)

The roots are equal if A + 'Bm^ = AB-^^,

" =Wf 1

+ B
The line in this case is said to touch, or to be a tangent to,

the curve. If we suppose m to remain constant and k to change,

then as k approaches this value (from one side or the other) there

are two points of intersection, which coalesce when k reaches

this value.

The tangents in the direction tan~'?tt to the ellipse are

y = mx + ya^m^ + P^ ;

and there are two real tangents in every direction.

Tlie tangents to the hyperbola are

y = mx+ v^a^m^-P^;
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these are only real if a?m^ ^ ^"^
; if \ni\<^- If

I

»'-
1
= ~

we have the asymptotes.

Similarly, the tangents to ^ - '\ = 1 are only real if

Going back to equation (ii), the roots are real and unequal if

AB/J-2 < A + Bm^-

P 1 m^
In the hyperbola this becomes ^-p < -^ — -p J

In the ellipse this becomes
|
^

|
> i/a^m'^ + P^.

becomes =-^
a-'P

If
I

w
I

< —
, this condition is always satisfied.

Referring to the figure on p. 147, we see that all lines

parallel to lines through C within the angle QCQ' cut the curve

in two real points ; and that lines in other directions cut, touch,

or do not meet the curve, according to their position as determined

by the value of L

In equation (i) if m = + = + _ in the hyperbola,

the coefficient of x^ is zero. This corresponds to one infinite root.

[In the quadratic «»'* + fe + c = 0, or <:• T-) -\- h (-j + a = 0, one

root in - is zero, and therefore one root in a; is oo if a = 0.1
X -'

All lines parallel to an asymptote meet the curve at infinity

and at a finite point x — If A is 0, the second root is^
2B»m/c

also infinite, and also the condition of equality of roots is satis-

fied. For this reason an asymptote is said to touch tlie curve

at infinity.

y — mx + k meets the parabola y^ — ipx at points whose

abscissae are roots of /^^ ^ A2 = 4.px^

m^x'' + 2.r {mk—2p) + P = 0.

The roots are equal if (mk— "ipf = k^m^,

mk = p.
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.'. y = mx + — is the tangent in direction tan~^»?.
m

Tiiere is one real tangent in every direction. By putting

^ = — we find that the point of contact is (—^ > — ) • If this is

(ajj, y^, the equation to the tangent may be written

'^P 2// . „ / , V—y = 2px+ -'^, 1.6. yyi = 2p (x + Xi).

The roots are real and unequal

if {mk—2pY > k'^'tn?,

if k<^,
111

and' imaginary if k>—-

Note that it is easy to show that the tangent at the vertex is

parallel to the axis oi y, as drawn in Figures 59 and 60.

y = mx + k touches the curve Ax^ + 'By'^ = 1 at x-^y-^ (P),

where «, = =r—?, since the roots of (i) are equal, and

1 , •^'^ 1 7 I'Bm^ + A
where y, = mx-. + A = -—-—„ , where k = / Z

ABmk m , _ ABk 1

••^*^ = -^pab=-j"°'^ ^^^ = ABi^ = r
The equation is ——x+^— 1;

and .•. AxXj + Byyj = 1 is the tangent at (xi,yi).

F is on the line Ax = — mBy, and if the equation of CP is

A
written y — m'x, then mm' =

B

The .length of the semi-diameter CI) in direction m is x'^ +y''^,

where x', y' lies on the curve and on y = mx.

.-. {A^-Bvi^) x'^ = 1,

and Cm^ ^^'"\
A + Bw/2
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The equation of a chord P, Q, is obtained as follows :

HP, Q, are {x^i/^, {i>-\y^, then

AV + Byi== 1 =Af,/ + Bj//;

Equation of FO is ^^^ = '^^^^

Combining these equations,

A (*-ag (a'l + ag = -B (y-y^) iy^+y.^)

unless a'j = a'^.

. . Ax (xj + X2) + By (yj + y^) = Ax^ + Bi/^ + Ax^x^ + B^j ^3

= l + AXiX2 + Byiy2.

This is the equation of the chord in a symmetrical form.

We can obtain the tangent at P as follows

:

Let x^ — a,'j + d, y^=y^ + df,

2Axx^Jr2-Bi/7/^ + Ad{x-x^) + -Bd'{i/-y^ = l+Aa^j^ + B^i^ _ 2,

Now let d and therefore d' become small and proceed to the

limit where Q is indistinguishable from P. We obtain

Arai + By^i = 1,

as before, for the equation of the tangent.

Conjugate Diameters.

If Qj (^i^i) and Qii^ilZ-i) ^i'6 the intersections of y = mx + k

and Aa;^ + By2 — i^ and V {x, y) is the middle point of Q,-^, Q.^,

then i- — ~-

—

- = half sum of roots of equation (i), p. 156,

Bm/e

A + Bnr

But Fis on Qj^Q^; .'. y — mx + k.

Now regard m as constant and k as variable ; that is, take

a series of parallel lines to meet the curve.

Eliminating k, x (A + Bm^) = — Bin (j— mx),

and V is on the line Ax + Bwy = 0, which may be written

y — m X, where mm — — — •
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Hence (p. 158) m' is the direction of the tangent at P, where

CP is in the direction m.

The locus of the middle points of chords parallel to a diameter

Fig. 62.

PP' is therefore the diameter {1)1)') parallel to the tangent

at P.*

The symmetry of the equation mm' = — _ , and the wording

of the proposition, both show that the property is mutual ; i.e.

that while I)If bisects chords parallel to PP', PP' bisects chords

parallel to DTJ

.

In the ellipse, lines through C in both directions m and m'

meet the curve. BB' and PP' are then called conjugate

diameters, mm = =-

a'*

A P^ 3
In the hyperbola, mm' = — — = -;• If?»<-. CP meets

' ^ B a^ a

the curve (p. 157) ; hence m' > - and CB does not meet it. CP,

GB are then conjugate direotions.

If the hyperbola degenerates into a pair of straight lines, the

properties relating to the bisection of parallel chords and con-

jugate directions is still true.

In the circle mm'=—l, and perpendicular diameters are

conjugate.

* It is also clear that the tangent at P is the limiting position of a parallel

chord.
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In the parabola it is easily shown that the locus of middle

points of chords in direction m is y = — , that is, the line parallel

to the axis through the point of contact of the parallel tangent

y = mx + — • Such lines are called diameters of the parabola.

[The property can also be obtained by keeping B fixed in

Figures 59 and letting G go to infinity in the direction A'.'\

In the ellipse C'P^ + CB^ = ^'^"'\, + ^

1 + m^
+

„ ,
-7- (p. 158)A + Bm'' a + Bm ^

^^ '

1 -\-m''^ III' (\ +m'') — m (1 + w/^)

B (
— m' + w) m B (

— 711 + m') vt Bmm' {m—m')

III III'-\ 11 , „., J J. ^
r- = 1 = a" + S-, and is constant.

Bwiu B A

Application to the Conjugate Hyperbola, viz.

-A«2-B/ = 1. B =: - 1

This hyperbola has P for its semi-axis, B for its vertex, and the

same asymptotes, y = + -x,as the hyperbola Ax^ + B^^ — 1

.
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If 7um' = =
, the directions 7/), «/ are conjugate

B — B
for both hyperbolas.

Let the line 1/ = or/x meet the conjugate hyperbola in F; we

1 + ^/^
have from p. 158 CE^ = 7^, and working as in the last

' —A — Bm ^

paragraph, CP'^—CE^— 1 = a^— P^ and is constant.
A B

From p. 158 the tangent at P, on the diameter y = mso, is in

direction mf, and its equation is

i/=m'x+Vo.^m'^-^^. (i)

Similarly the tangent at E, on the diameter y = m'x of the

conjugate hyperbola, is in the direction g-iven by mm' = —
,

and is parallel to CP. Its equation is

y = mx+ '- = mx + V — a^iii^ + P^- . . (ii)

(i) and (ii) can be shown to meet on the asymptotes _y= -x. (iii)

For the abscissae of the intersections given by (i) and (iii) are

by (ii) and (iii) are *^ ( in) —— a^^te^ + p^, x'^ = a^
•i ^ J ^ ' \a, '

P — a?B

If T is the point of intersection, PT = CE, and ET = CP.

Thus the asymptotes are the diagonals of the parallelogram

formed by tangents to the two hyperbolas in conjugate directions.

X-

Examples. 1. Show that all hyperbolas having the same asymp-

totes have the same conjugate directions.

2. If a line meets an hyperbola, its asymptotes, and its conjugate in

Q-^Q^, L-^L^, and KiK.i respectively, then L-^^Q^ = L^Q^ and L-^K-^

LJ(^.

Pole and Polar.

Let the tangents at K (»'/), K' {so"f) to Ax^ + Bf = 1

meet at Q, (£ r/), and let A'A' always pass through the fixed

point P(«j,^j). We shall prove that the locus of Q, as the
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chord A'A' takes various positions, is A,'.r| + B0j = 1. This line

is called the jDolar of P with reference to the curve, and P is the

pole of the locus.

The equations of the tangents KQ, K' Q are

ATse' +By/ = 1,

Axx" + Bt//' = 1.

Fig. 6i.

Since these pass through Q,

A^af + Bri/ =1 and A^«" + B);/' = 1.

But these are the conditions that «', y'
; x", y' lie on

A£« + Br)j/= 1, which is therefore the equation of KR' , the

chord of contact of the tangents from Q.

Since P is on KK', A f^i + BTj^j = 1, . . . (i)

and .
•

. Q (f, ?;) lies on Axx-^ + "Byy-^ = 1 (ii)

M 2
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The polar of P, viz. (ii), is easily seen to be in the direction

conjugate to CF, whose equation is ixi/.^ — i/x^ — 0.

From the symmetry of equation (i) it appears that if Q, is on

the polar of P, then P is on the polar of Q,.

Examples.

1

.

Show that the tangents at the extremities of any chord intersect

on the diameter conjugate to the chord.

2. Show that the polar of i^iy-i) with reference to the parahola

2/2 = 4;;a; is yy^ = 2p{x + x-^.

3. Show by transference of the origin or otherwise that

«»! + hyy^ + g{x + Xi) +/(?y + y^) + c =

is the tangent at P (wiJ/i), if Pis on ax^ + h!j^ + 2 gx + 2fy + c = 0,

and is the polar of P-y if P i.s not on tlie curve.

P
Note. The equation y = mx H— for the tangent to the

parabola may be obtained as follows

:

4-

P

Using the method of pp. 155-6,

(x-aY y

y = mx+ -/a^w^ + P^ touches -^ + f^ = 1.

y = m{x-o)+ Vo.^m^ + P' touches
^^

+ |^
= 1,

i.e. y'^ = 4^2^x in limit

;

g2 i

y= WiC-?;za + am(l + ^^"^

= mx—ma+am (l + - —5 +...), by the Binomial Series,
^ 2 am- '

p \ jfi ^ ... 1= mx H -!—. + terms involving -5-

,

nt 2 am^ a^

= ma; H— in limit.
m

As an exercise, the equation of the tangent or polar,

m= 2p{x+x;),

should be obtained by this method of limits.

Before going hack to the general equation we will obtain some

further geometrical properties of the parahola and ellipse.
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The Parabola.

It lias already been shown that y = mx + - touches y^ = 4_px at

(V 2_P), and that i.V=ii,A7^ = ^.

If this tangent meets the axis ai T,y = 0, and AT = x = ^

.-. TA = AN.

.-. TS= AN+AS = AF+ KA = KX = SP.

Fig. 65.

Draw Pf? perpendicular to the tangent at P. PG is called the

nwmal.

Since SP = ST and TPG is a right angle, .•. S is centre of circle

TPG, and ,?(? = /SP = 2W = » f 1 + i ) since TS = AN + AS, and

and is constant for all normals.

NT, NG are called the subtangent and the subnormal.

Examples {to he done hy geometry or analysis).

1. Show that the equation of PG is m^y + m^ {x — 2p) —p = 0.

2. If »i = taii0, show that Z PSG is 29, and that PT bisects the

angle between PS and Pi'', where PF ia parallel to 4X.

3. Show that the perpendicular from the focus on a tangent meets

it on the tangent at the vertex.
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4. Show tliat tangents in directions »ij, m^ meet at :Z" whose

co-ordinates are
( ,p( 1- — ')]

,

iind that this point is on the line through the middle ]3oint of the

chord of contact (F) parallel to the axis.

5. Theequationof achord is wf— + — ) = 2( a; + ~— ), where
^Mij Wig m-^m,.2''

nij m^ give the directions of the tangents at its ends.

6. If T'V, in example 4, meets the curve at R, show that T'li = RV,
and if P is the point of contact of the tangent in direction m^,

PV^ = 4:SE.RV, and PF is parallel to the tangent at R.

[The last result is used in the dynamical proof that the path of

a particle moving under gravity in vacuo is a parabola.]

7. Show that PS meets the curve again at P' {pm^, - 2pni). and
that the tangents at the extremities of a focal chord (i.e. a chord of

the curve passing through the focus) meet on the directrix at right

angles to each other. In j^articular the tangents from K touch the

curve at the ends of the latus rectum and make 45° with KX.

8. Show that the semi-latus rectum is the harmonic mean between

two segments SP, SP' of a focal chord.

The Circle and Ellipse.

Circle. Let x^ + y'^ = a^ be the equation of a circle.

Let t-^QT he a tangent at any jjoint Q {«!,y) meeting GX, GY at

T,h.
Let Z QCT = 4>, X = GM = a cos ^j, y = MQ = a sin dp.

Then GT = GQ sec (^ = a sec ^, and Gt-^ = a cosec (^.

The equation of the tangent is

a sec <p a. cosec (j)

that is a- cos (/) + 2/ sin (^ = a (i)

GM. GT = a2 and GN.Gtj^ = a^, if QN is perpendicular to C F.

Take another point Q'. Let Z Q'CT = t^'.

Join QQ', and draw GL perpendicular to it. Let QQ' meet the

axes at /, //.

Z LCQ =
i{(j>'- (p), and LCX = ^ (cj) + cj)') .

•
. CZ = a cos i {(j>' - 4>),

GJ = GL sec A ((|)' + <^), GH = GL cosec 1 (</>' + (/>).

The equation of ^Q' is^ + -^ = 1,
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that is, X cos ^ ((^' + </>) + 2/ siu i (</>' + ^) = CZ = a cos ^ {4>' -
(f)).

(ii)

The tangent at Q' is x cos </)' + 2/ sin ^' = a. This meets TQ at E
on 6'Z produced. Ci? = GQ sec ^ {<j)' - ^). By projecting Ci? we

find the co-ordinates of li to be

a cos ^{4> + 4>') sec ^ ((/)' - </)), a sin ^ (<#) + 4>') sec ^ (ij)' - ^).

EJlvpse. Now reproduce the figure with every point brought

nearer the axis AA' in the ratio—. If (a^j 2/) ^'"^ the co-ordinates of
a

any point in the first figure, and {x, y') of the correspondipg point in

tlie second, ?/' = -.y, y = ^.y'.

The lines and points in the second figure may be called the

shadows of those in the first.

[If the first figure is tilted about the line AA' so as to lie on an

inclined plane, till the angle of the plane is cos~^-, and then its

shadow is cast on the original plane by rays of light perpendicular to

it, the second figure is obtained.]

If the point (x, y) is on the circle k^ + y^ = a^, then x, y' is on the

(ct \

-^y') = 0.^, in the sliadow.

^•^' T "^
R2
= 1) ^'^^^ *'-' ^" elapse.

The vertices are A, A', B, B', where

CB = OB' = ^of CB, = ^of a = p.
a a

The angle 6 (or QCM), which is not the saime as the angle PCM, is

called the eccentric angle of the ellipse at the point P, or the

eccentric angle of P.

The co-ordinates of P are

CN = a cos ^, and iVP = -of NQ = /3 sin <}>.

a

The shadow of a chord is a chord, of an intersection is an inter-

section, of a tangent is a tangent.

The equation of the tangent at P is obtained from (i) as follows

:

Any point on QT satisfies x cos (j) + y sin </> = a.

. •
. any point on PT satisfies

xcos
(f)
+ -^y' sin (j) = a, i.e. -cos (^ + -„- siu (|) = 1

.
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Now suppress the ', and we have the tangent to — + ^, = 1 at
a' p^

a point whose eccentric angle is 4> (generally abbreviated to 'at

a point 4> ') is

-̂ cos (j) + - sin d) = 1 (iii)*
a p ^ '

Similarly, the chord c/j, <^' is

^cos^(<t> + <|>')+|sini(<|> + >j.') = cosi(<^-<t.') . (iv)*

and the intersection of the tangents at (^,
^' is

a cos i ((^' + 4>) sec A (<^' - (/)), /3 sin i ((^' + 0) sec i ((#>' - t^).

In the ellipse, CM.GT= a?.

MP.Ci==^. MQ . ^ C^i = ^ CN . C\ = p2.

The area of the ellipse is area of circle x — = jraB.
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The method here used is called the method of orthogonal projection.

By it, properties relating to ratio, parallelism, tangency, and inter-

section can be passed from the circle to the ellipse. These are called

projective properties. Properties relating to angles are not projective,

for right angles and equal angles do not cast rectangular or equi-

angular shadows.

The student can develope further properties by the projective

method and by the use of eccentric angles by the following series of

examples.

Examples on projective method.

1. The tangent at (xj, y-^), a point on an ellipse, is^ + -^^ = 1.
o. p

2. If tan~^m is the direction of a line in a figure, taii"^ m' of its

shadow, m' = - m.
a

3. The tangent to a circle jn direction tan~i m is

9/ = mx + a V'l +m^.

To an ellipse in direction tan~^ m'

y = m'x+ x/aW^Tp^.

4. Diameters of an ellipse in direction tan~^ m-^, tan~^??)2 are con-

jugate if m-^m^ = ^

"

6. In Figure 62^ -^^--p, = ~—^, and the tangents at Q-^, Q^

meet on CP at T, where CV.CT = CP'^.

. 6. The area of the parallelogram formed by the tangents at the

extremities of conjugate diameters is constant.

7. The equation of the polar of P (ccj, 2/j) is —^ + "^ = 1, and if

CP meets the polar in V and the curve in E, CE^ = GV . CP.

Examples on eccentric angles.

1. The equation of the normal at P is a;asec()i-yP cosec(|) = a2 -|3^.

Hence GG = e"^ . GM, where PG is normal, CM abscissa, and G
on GA.

2. The product SP . S'P equals CD^, where GP, GD are semi-
conjugate diameters. \SP = ce (1 — e cos (^).]
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3. The normal at F bisects the angle SPS'. [SO = «e (1 - c cos 6),

if normal meets AA' in G.]

4. If iS'y, S'Y' are perpendiculars on to a tangent SY .S'Y' = P^.

SY = p
II -e cos(j) 1

'V 1 + e cos (#) J

5. If the normal at P meets the axes in G, g and the diameter con-

jugate to GP in F, then FF.PG = b^, FF. Fg = a\ [FF = per-

aB "I
pendicular from centre on tangent = ^,„„ ;;— „ . „ ,,^ =

V(|32cos2(/j + a2Bin2()S) J

6. The co-ordinates of the intersection of the tangents at the ends of

conjugate diameters may be written a (cos (Jb + sin <jb), b (cos (p — sin (j)).

7. Find the co-ordinates of the intersection of the normals at

((/>,./,'). The abscissa is ae^ cos—-—
. sec —~— cos (j) cos </>'.

An Important Property of th.e Hyperbola.

If P{xi,Pi) is on tlie hyperbola ^ - '— = 1, and PA', PL are
a p

perpendicular to tlie asymptotes, then PK . PL is constant

;

Fig.

for the perpendiculars from P to i ^ ^' ^""^ - + ^ = are

2/1

PK = ,- and , = PL.



•. p/l.pi
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[If *S is a luminous point, and the ellipse a reflecting rim, all the

light in the plane of the ellipse is reflected to »S'.]

Fig. 69.

In the case of the parabola PS' becomes parallel to the axis, and

the tangent bisects the angle between SP and PF (Fig. 65).

[In this case all the rays of light emanating from S are reflected in

parallel lines. This gives the principle of the search-light.]

Let S'P meet SY produced in E. Then SY = YK. Then

S'K = S'P±PK = S'P±SP = AA'.

But GY = ^S'K, since C and Y are middle points of SS', SK.

.-. CY= OA.
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Hence locus of Y and of Y' is the circle x^ + y^ = a^- This is

called the auxiliary circle.

In the parabola it degenerates into the tangent at the vertex.

It is easy to show that S7.S'Y'= /S^.

The Director Circle.

The directions of two tangents through a point ^, t; are given by

the equation in m

,, = mf +^ — + -, I.e. (mf-,,)2 = -^ + g •

If OTj , OTg ^1"^ the two values of m,

mim2 = (7,2-g)H-(P- i).

These are perpendicular if jn^ Wj = — 1, and hence the locus of the

intersection of perpendicular tangents is the circle

a,2 + „2 = i- + i = a2 + S2
•^ A B - '

which is called the director circle.

For the parabola this circle degenerates into the directrix, thus

—

IT -1- ?/

{x - of + 2/2 = a^ + p2^ 35 _ _j, = — j9 in limit.

Transformation of Co-ordinates. Rotation of Axes.

Let P be any point, co-ordinates {x, y) referred to axes

OX, OY.

Take another pair of rectangular axes OXj, OFj, where ZXGX-^

= a positive angle d.

Draw Pi\^ perpendicular to OX, PAl to OX^.

Let OM = x', MP = y', ON = x, NP ^ y.

Then ON — projection of OP on OX = sum of projections of

OM, MP
= x' cos Q +y' cos {d + 90'), since MP parallel to

07j makes the angle 5 + 90° with OX.

•. X = x' cos — y'sinS.

Also NP = projection of 031, MP on OT
= OM sin e + MP sin {6 + 90°).

. . y = x' sin 6 + y' cos 6-
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If, then, in any expression these values are written for x, y, the

resulting' equation in (»', y') shows the same expression referred

Fig. 70.

to O/i'j, 0J\ as axes; and iif{x,y) == is the equation of

a locus referred to OX, OY && axes,

f {{x cos 6—ysva. 6), {x sm 6 +y cos, 6)} =0
is the equation of the same locus referred to 0A\, 0J\.

(Compare p. 142.)

The following notation will be needed :

Let A = bc-f^, B^ca-g"^, C^ab-Jfi, F = gli-af,

G = Jif-lg, li^fg-ch, and A = aljc^2fgh-af^-hg'^-c¥.

Then A = a^ + UIi-\-gG =. hH+ hB +fF = gG +fF+ cC

by direct substitution.

It is easily shown that BG - F^ = a A, GH-AF = fA, &c.,

and ABC +2 FGB-AF^ - BG^ -CH^ = A^,

and ciG + hF+ ijC = o = AG-' + bF+fC.

General Equation oi- the Second Degree.

ax2 + 2hxy + by" + 2gx + 2fy + e = 0. . . . (i)

Now remove the restriction that /i = that was made on p. 143.

Vi'e can show by two steps of transformation that, with certain
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exceptions, this equation represents an ellipse (or circle) para-

bola, hyperbola, or pair of straight lines.

Fint, refer to a point {x, y), 0', as origin, with axes O'Xj

,

O'Y.^, parallel to the original axes. 0' is still to be chosen.

Y
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Tlien the equation becomes

ax^-V2hxy-\-bif-\-g-^ +f--7j +c--- 0,

i.e. ax2 + 2hxy + by2+ - = (ii)

This transformation breaks down when G — 0, but in no other

case.

0', so found, is called the centre of the curve. For if a point

/"(a^i, ^i) satisfies (ii) so does P' (— x-^, —y-^, and TI" is bisected

at 0'.

Secondly, if C ^t 0, rotate the axes through an angle 6 (still to

be chosen) with 0' as origin.

The equation becomes

a {x cos 6 —y sin 5)^ + 2h (cccosd—y sin 6) {x sva.d+y cos 6)

+ h {xsme+ycoB9f+ jr — ^ (p- 174),

i. e. x^ {a cos^ 6+2Ji cos 6 sinO + b sin^ 6)

+y'^ {a sin^ ^- 2 ,4 sin cos 9 + i cos^ 5)

+ xy (f^a 'ism6coBe + 2h{cos^6-sm^e)) + — = 0.

Choose 6 so that the coefficient of xy is zero,

i. e. let {h-a).sin2d-\-2hcos26—Q,

oil

tan 26 1= (iii)

a —

b

There are always two distinct real values, say 6^ and 5^+90°,

to satisfy this equation. For definiteness take 6-^ to be the angle

between 0° and + 90° that satisfies (iii).

Give 6 the value 6^, and the equation becomes

aix2 + biy2+-=0, (iv)

where u^ — a cos^ 6-^ + 2// cos 6^ sin d^ + b sin^^j i

^1 = «sin2ei-2/^coseisinej + icos2dii ' '

^'''

.
•

. aj + bj = a + b, (vi)

and /i (cos^ B.^— sin^ 0-^) + {h— a) cos 6.^ sin 6^

— half the coefficient of a'j' = 0. , . (vii)

1436 J^
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Multiply tlie first of equations (v) by cos flj and equation (vii)

by sin 6^, and subtract the latter.

a^ cos ^1 = (cos' 5j + cos 0^ sin^ d-^) + h (cos^ 0j sin Q-^ + sin^ Q-^ sin Q^ ;

.•. a, = a + htanfl,.

)

, ....
^ ^ \ (viu)

Similarly, b^ = b— h tan \ . S

Equations (iii) and (viii) are sufficient for the graphic con-

struction of the curve of equation (ii), but it is important to

discriminate between the curves included vpithout solving.

We have a^l^ = ab -^r h (J)
— a) tan ^j— h?' tan'^ Q-^

.

Bat (b- a) tan e^ + /i.{l- tan^ 0^) = from (vii).

.-. a^bi = ab-/i^l-tan^ei)-AHan''e^ = ab-P = C. . (ix)

From (vi) and (ix) a^, b-^ are roots of the equation

j2_(a + j)X+C=0.

Case I. a^, ij atid — -^ all the same sign.

Let

Then a and |3 are real.

Equation (iv) becomes -2" + -02 = ^' ^'^^ ^^ locus is an

ellipse. lie
^ •" P "^ ~ A ^'"i"'"*!^ " ~ A ^'^'^^^ ^'°'" ^^^'

«n<J ^. = —^ = ^ from (ix).

Therefore a^ and P^ are the roots in ?'^ of

The roots are equal if 4C= {a-^bf, i.e. if ^h^-\-{a-bf = 0,

if // = and a — b. This is the condition for a circle.

Case II. a^ and b^ qf different signs. Suppose a^ aud — —
of the same sign.

Let —1— = — ,
-J- = — ; then o and S are real.

A o^ A p-i ^

1
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Equation (iv) becomes -2 —'L = '^> ""d the locus is a ki/per-

hola."A
If ij and — -^ were of the same sign, the equation could

be written — ~^ + hi — ^

1+ C_l)=_£(a +a

and — X
1 . Is a.LC C^

V B'''-^
~ A ~ A-

'

a^ and — P^ are then the roots in r^ of equation (x).

a^ = p2, if a + 6 = 0. This is the condition for a rectangular

hyperbola.

Case I, which leads to the equation of an ellipse, is obtained

when «j, 5j are of the same sign, that is, when C {= ab — lfl) is

positive, since a^h-^ = C\ that is, when ah > Ifi.

We must have the further condition that a-^ and A are of

opposite signs. Otherwise equation (iv) gives the sum of posi-

tive quantities = which is not satisfied by any real values of x

and y. From equation (vi) a^ and a are of the same sign, since

«! , 5j are the same and also «, h, since ab > Ifl.

The area of an ellipse is Tra/3 (p. 169) = ttA -; C-JC.

Case II, which leads to the equation of an hyperbola, is

obtained when ab < Ifi.

Equation (x) gives the lengths of the semi-axes.

Rewriting (iv) as 1

—

= 1. we see that° ^ ' A A

"^\/-^'''=V~^
are to be measured along O'X^, 0'}\ respectively. Equations

(viii) then distinguish between u. and |3.

The equations of the axes of the curve referred to O'Jj, O'J',

N 2
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are y = oe tan flj, y — m tan {Q-^ + 90) = —x cot 6^. Points on

these all satisfy the equation

{y— X tan 6^) (y + x cot 9j) = 0,

2 Si u a 4.a\ sin^^i-cos^ej i-«
I.e. y'— x^ = a;?^ (tan 6, — cot 5, ) = i»y • —.—i r-^ = x//—;—

;

^ .y V
1

^'' -^ sm 6li cos 0^ -^ h '

i.e. ^= -7-' which is therefore the equation of the axes
a—o n

referred to O'X^, O'Y-^.

E.g. draw the curve 2x^ — 4:xy + 5y^ + &x-'ky = Q,

a = 2, 6 = 5, c = 0, / = - 2, jr = 3, ^ = - 2,

C=6, (? = -ll,/' = -2, A=^ff +//?"+ cC = - 29.

The centre is -^
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"' = ~ ^ ^ ^' " = ^'-^ •• P^ = It' P = 'SO-

The work can be checked from the drawing by special values.

Thus in the original equation, if w = 0, y = or f (P),

If « = - 1, 52/2 = 4, y = ±-89 {RR').

If A = 0, equation (x), i.e. C^. ;*+ CA (a + i) >'2 + A^ = 0,

has both its roots zero, and the curve is neither ellipse nor

hyperbola, (iv) becomes a^x^ + b-^i/^ — 0. If a^^ and h^ are of

the same sign, i. e. if ab > P, from (ix) the only solution is

a; = = y ; i. e. the point 0'.

If ab < Ji'^, fl^ and Sj are of opposite signs, and we have

i. e. a pair of straight lines.

If then A = and C < 0, the general equation represents

a pair of straight lines.

[Ex. Show that if A = = C, the equation represents two

parallel lines.]

Now return to the case omitted, where G = 0, h^ = ab.

a and b are of the same sign. Write the equation so that

a, and .• . i5, is positive. Take a = l^, h = m^, and . •. h — Im.

The equation becomes

Px"^ + 2 Imxy + m-f + 2gx+2fy + c = 0,

i. e. (Ix + mi/f + 2gx + 2/> + o = 0.

We cannot make the first transference to a centre, but we can

remove the xy as before by rotating the axes through 6, where

„ m
2 —

2h %lm I

tan 2Q =
a — b l^— tri^ vr

6^ = tan~^— satisfies this equation (p. 58).

Write ir = tii^ + P. Then coa 6 = - > sin 9 = —
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Hence in the rotation we must write for x and ~

Pec + m^
'^ "'

for 1/, and therefore = nx for Ix + my.

mi , • 1 ; o ^ i^— IIIM „mX + lu
The equation becomes n-x^-\-2n ^ + 2f ' + c = 0,

H n

i. e. 7i^x'' + 2x [gl+fm) + 2y {fl—ym) +cm = 0.

This is the equation of a parabola (p. 149) whose axis is

parallel to Z, , the new axis of y, which is y = x tan (0j + 90),

i. e. Ix + my = referred to the old axis.

Summary. The general equation of the 2nd degree represents :

if A = 0, and C > 0, a pair of straight lines
;

if A = 0, and C > 0, one real point

;

if A 7^ 0, and C < 0, an hyperbola

;

if A :^ 0, and C = 0,& parabola

;

if A 7?: 0, C > 0, and a and A are of different signs, an

ellipse.

if A :^ 0, C > 0, and a and A are of the same sign, no real

points.

Examples.

1

.

Find, where possible, the centre and the equations and lengths of

the axes of the following curves and draw them. Verify by finding

where the curves intersect the axes of co-ordinates (by putting as =
and y = successively in the original equations). If the curve is

a parabola, find the vertex.

(i) 3x^-7xy+15y'^ + 2'ix = 0.

(ii) 4x^+18xy-7y^+ 12x+ 7^/+ 15 = 0.

(iii) 3,t2 - 7.ry + S.^ + 4 = 0.

(iv) 4a:2+12a;2/ + 9/-10£c-2y+5 = 0.

(v) 6x^-xif-\2y^-ix+23y-10 = 0.

2. Remove, by transference of axes, the x^ term from

2x^ + 6x''+7x-8 = y,

the X term from 2a;^+3a; — 4 = y, and the xy term and absolute term
from x'^ — 2xy + y^ + 3x — i =: 0.

3. Show that ii A = B = = 0, then A = 0, and the general

equation represents two coincident straight lines.
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Intersections of General Equations of First and Second

Degree.

y = mx + k intersects aa;^ + 2 lixy + hy''' + 2gx + 2fy + c = at

points whose abscissae are given by substituting 7nx + k for y in

the second equation.

The result is

X' {a + 2km + bm'^) + 2x {k (A + mb)+ff + m/} -k-hB \-2fk-^c = 0.

If the intersections are ? (^^i^i) and P' {x^y^ and «', y' is the

middle point of TT'

,

y' — ^nx' + h,

, a\ + x^ k {h + wJj) + r/ + mf
and X = —-— = —^.——.—

7,
—

.

2 tf + 2 km + bm^

Eliminating k, we find the locus of the middle point of

parallel chords to be

ax + Iiy+g + m {Jix + by +/) = 0.

This is a straight line through the centre of the curve (p. 176).

T ,. . . . , , , a + mh
Its direction is tan~^ w , where m — — -.—-.—

;

k + bm

.• . a + /i (m + ??i'} + b7iim' = (xi)

This relation is symmetrical and we have the general property

of conjugate diameters. (Compare p. 160.)

One root is infinite if a + 2km + bm'' = 0. This equation

gives the directions of the asymptotes of the hyperbola (where

k^ > ab). We know from p. 148 that the asymptotes pass

through the centre.

F G
Their equations are therefore y— — = m(x — —^ , where

a + 2/im + bill'' = 0. Eliminate m.

a {Cx- Gf + 2k (Cx- G) {Cy-F) + b{Cy-Ff = 0,

C2 {ax'' + 2 hxy + J/) -2Cx{aG + hi) -2Cy{hG + bF)

+ aG^ + 2hFG + bF^= 0.

Now aG + hF=-gC, and 7iO + bF=-fC from p. 175
;

.-. C''(ax' + 2hxy + by^-^2gx+2fy + c)

= cC^-G{aG + kF)-F{AG + bF) = C{cC+gG+fF) = CA.
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The asymptotes are therefore

aA'2 + 2 /i^j/ + 5/ + 2 r7,r + 2yy + c - — = 0. . . (xii)

Hence to obtain the asymptotes we have only to add (or sub-

tract) a constant to the equation. Obviously this constant can

be determined by making it satisfy the condition for a pair of

straight lines.

E.g. the asymptotes of

xy-^2y''' — ^^x— are 12^ + 2^^— 4,» + <;? = 0,

where

= abc-^lfgh-cvf^-hf-cJfi = + + 0-2 (-2)='-^(i)2,

(I = -32,

and the factors are (^ — 4) (« + 2y + 8) = 0.

Thus all hyperbolas whose equations differ only by a constant

have the same asymptotes. They have obviously the same

centres since c is not involved in the equations for the co-

ordinates of the centre. They have also the same directions for

conjugates since c does not enter in equation (xi), p. 183. The

asymptotes themselves are included in this ' family ' of curves.

An hyperbola and its conjugate are particular cases.

In the standard form the hyperbola is -2 — ^ — 1 = ^j the
o. p

asymptotes -g- — '^ = 0, and the conjugate -^ — '|j + 1 = 0.*
n p P _l

If, then, any line be drawn to meet a family of curves at

Pj P^, Q^ Q2, Ri R^' ^^•) ^'^'i their common asymptotes at i/j Z/j,

and the conjugate line be drawn to cut this at F, then F is

the middle point of P1P2, Q-^Q^' -^i^f ••• ^^^ A A' ®o that

Pji/j = ^2-^2' ^^- That the point of contact of a tangent is

the middle point of the part intercepted between the asymp-

totes is a particular case. (Fig. 63.)

* The equation of the conjugate to the general curve is

for the sum of the expressions on the left hand of the equations of the two
hyperbolas is twice that of the equation of the asymptotes in the standard

form, and this equality is not affected by change of axes. The A's for the

two curves are equal and opposite, and the roots of )' in equation (x) arc

changed in sign.
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Example. Draw on the same figure 2x^- S^y- 22/^ = 4,

2y?-%xy-2if =-4, and 2x^-Zxy -2y'' = 0.

Draw y = 8K+ 6 to intersect these at P^^P^, Q\ Q-ii ^"^ '^i ^^2> s"'-'

find the equation of the conjugate diameter. Observe that

P,R^ = P^R^, and r^iA\ = (?2fi2.

If «^yj is a fixed point /, then a line through it in direction

6 may be written

y—y-^ = (« — «j) tan 9, i.e.

sin 6
(i-jj^OJ

P(X.y)

Fig. 73.

COS 9

where / — JF, P being {oey)

and ;» = ajj + ? cos 6,

y = yj+ r sin 6.

If a line JPP' be drawn

to meet the curve

/'(«, y) = a«;2 + 2 //a;y + iy^

+ 2ffx + 2fy + c = 0,

the distances

JP {^ r,), JP' (^ j;)

are the roots in r of

ft («! + r cos 0)2 + 2 ^ (a'l + r cos 5) (j/j + /• sin e) + b (j^ + r sin 6)^

+ 2// {x^ + r cos e) + 2/(^1 + r sin 5) + c = 0,

i.e. (a cos^ e + 2 /< cos 9 sine + bsm^d)/^

+ 2r[cos9(«a'i + /lyi+ff) + s{n6{/ix^ + hy^ +/)] +/Kyi) = 0, (xiii)

where the last term is to be obtained by writing (a-jy,) in the

left-hand side of the equation of the curve.

, / ('''i yii
Hence JP . JP = r, r„ = .,

'

^—.— . . „
' ^ a cos'' e + 2 /; cos 9 sin d 4- 6 sin^ d

If a second line JQQ' is drawn in the direction 6^,

JP . JF' a cos'' e*! + 2 /i cos Sj sin d-^ + b sin^ 6^

/(^yi)
a cos^ 9 + 2 /; cos fl sin e + ^ sin^ 9

a cos'' 6 + 2h COS 6 Bin 6 + b sin?

e

a cos'^ Sj + 2 /< cos Sj sin d-^^ + b sin^ 6-^

'

and does not dei)cnd on the position of / at all.
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This is one of the most general properties in the geometry of

the conic section.

Thus if / were taken at G, the centre of the curve, and

diameters SCB', TCT' were drawn in directions 0, 6-^,

JQ-JQ' _ CT. Cr _ CT^

JP.JP' ~ CR.CR' OR' ^ '

The following examples suggest particular cases, and also show

what a variety of results are dedueible from equation (xiii).

Examples.

1

.

The coefficient of r disappears for all values of Q if

axi + %! + gr = and lix-^ + f>l/i+f = ;

the values of r are equal and opposite ; then ajj yj is the centre.

2. One root of r is infinite if

acos29 + 2Asin0coa0 + 6siii29 = 0,

and both roots are infinite if in addition (x^ y-^ is the centre. (The

asymptotes.)

3. If {x^ 2/j) is on the curve, the absolute term is zero. Both

roots are zero, and the line
' -i = '

. } is a tangent, if

, cos V sm o

tan 6 = - —^—r^i

—

-. • The equation of the line then reduces to

toi + hy^ +f
axx-^ + h {xy^ + yxj) + byy^ + g{x + Xj) +f{y + yi) + c = 0.

If (xj yj) is not on the curve, the last written equation (as on

pp. 163-4) represents the polar of (aij^ y^).

4. If a line through / meets the curve in P, P' and the polar of /
• o ii

2 1 1inie,then_=-+—,.

5. As a particular case of equation (xiv), show that

P3/2 : AM. MA' : : p2 : a2 (p. 146),

and QV^:PV.VP':: CD"^ -.CP^ (p. 170, Ex. 5)

for all central conies.

6. Find the co-ordinates of the centre of a conic by finding the

pole of a line infinitely distant from the centre.

Polar Co-ordinates.

It is not within the scheme of this book to deal witK polar

co-ordinates at length.

The position of a point P in a plane is defined if the angle 6,

which OF (drawn from a fixed origin 0) makes with a fixed
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initial line OX, is known and the length OP (r) is known. 6 is

the vectorial angle, r the radius vector. 6 may have any value,

positive or negative, r, 6 are called the polar co-ordinates of P.

is called the origin or pole.

The co-ordinates, x, y, hitherto used, are called Cartesian

Pig. 74.

co-ordinates.* It is evident that for the same point x = rcos6,

y — rsinfl, r^ = x^+y^, 6 = tan"''-- We can thus readily pass

from one system to the other.

It is a matter simply of convenience which system shall

be used.

Equation of a Straight Line. If OK is perpendicular to any

line PK through P (r, 6), and if the co-ordinates [p, 6) of K are

-)t=§ = fgiven, then cos
(

The required equation is r cos (8 v*^ 9) = ^j.

[In Cartesians this is x cos 8 +y sin 8 = p, which should be

compared with p. 138.]

The distance d between two points P, Q [r^ 6-^, {r^ 0^) is given

by PQ^ = OP^+OQ^-2 0P.OQooa(9j^~^e2) (p. 53)

d^ - r^ + r^'-2 fj fg cos {6^ ^ e^

.

* From Descartes, who originated them in the seventeenth century.

t r^ means ' difference between ', the greater to be taken first.
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[Formula [A], p. 131, can be oLtainecl by substitution.]

The area of a triangle can be obtained by substitution from

that of p. 139.

The result is

If ('3^3) is on the line P{>\6i), Q {r^d^ this area is 0.

Hence the condition that r, is on the line PQ is

= sin (^1-^2) + — ^'"^ (^2- ^3) + "T sin (^-^i)-
'1 ''2

This is therefore the equation of the line PQ.
The equation of the circle, centre C (c, 6), radius p (Fig. 75), is

p2 = (7P2 = 00"'+ OP^-2 OC. OPcos (e-b)

= c^ + ?-^— 2 cr cos (O— b).

If is on the circle, c^ = p^, and the equation is

I- = 2pcos(9— 8),

and if the centre is on the initial line,

8 =: 0, and / = 2p cos 9.

The equation of an ellipse or hyperbola, with the centre as

Pig. 75. Fio. 76.

pole and the transverse axis as initial line, is, by substitution in

Aaj^ + B/ = 1,

/^(Acos'''6) + Bsin^<J) = 1.
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The focus is, however, the more useful pole.

SP ^e.PF^ e{K8+8N).

r — e{KS+r cose).

Let e . ^S = /. Then I is the semi-latus rectum, SF in Fig. 76.

The equation is then - = 1 — e cos 6.

I a

For the jDarabola this is - = sin'* - •

Let P (i\
^i), P (7-2 Q^ be on the conic - = 1 -« cos Q.

The equation of the line joining these points is

- sm.{6-^^-e^ = — sin (8-6^) t-in (d-ej), p. 188
;

.-. - sin (dj^ — e^) = (l-ecosei)sin(9-92)

-(l-ecos02)sin (6-6^)

= 2 sm^{e.^-e2)cos{e-^{e.^ + e2)}-ecos6sm{ej^~e^).

Hence the equation of PP' is

- = seci{ej^-e^) cos \e-^ {ej^ + e^)}-ecose.

Let ^2 approach and ultimately coincide with 9^ (as in the

argument of p. 159).

Then the equation of the tangent at P is

- — cos (6— 6j) — e cos d.

EXAMPI/BS.

1. If the tangent at P meets the directrix at F, show that PSF is

a right angle.

2. The intersection of the tangents at a and /3 has radius vector

I -h {cos i (a - /3) - « cos
-J-
(a + P)} and vectorial angle

-J
(a + ^).

3. If tangents at F, Q meet in T, ST bisects the angle Q8P In
the parabola ST^ = SP . SQ and the triangles SPT, STQ are similar.

4. If three tangents to a parabola intersect at T-^, T.-,, ?'„, then

a circle can be drawn through S, T^, 1\, T^.

5. Express ax + by = c in polar co-ordinates, by writing — = tan a
(seep. 141, Ex. 1).

"
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The following curves, which are not readily investigated in

Cartesian co-ordinates, are easily traced.

1. ) = a + b cos d ] a-^h (lima9on) ; if a = h, this becomes

r ~ 2«cos^^6 (cardioid).

2. r = ad (spiral).

3. logr —ad (logarithmic or equiangular spiral).

4. r^ = a^ cos 2 6 (lemniscate)

.

5. r (cos^9 + sin^5) = 3a cos sin 6 (folium of Descartes).

6. r =acos2d, asm2d, a cos 3 6. a sin 3^, and generally

a cos n 6, m integral.

E.g. To trace the cardioid r = 2a cos^^O.



SECTION VII

DIFFERENTIAL AND INTEGRAL CALCULUS

In very large regions both of pure and applied mathematics it

is necessary to deal with quantities so small as to be less than

any assigned finite quantity. This is the case, for example,

when we wish to find the laws which determine the formation

of a curve, or to determine the area of a curve, or to discuss the

motion of a body whose velocity is continually changing. We
cannot deal with such quantities directly by the rules of finite

algebra, but by using the method of limits we can obtain finite

ratios of vanishingly small quantities and operate on these.

Let y —f[x) be any function which can be represented by

a graph drawn by a

pencil that does not

break contact with the

paper. Let AB be part

of the graph. Let y
and y-¥^y be the values

of the function corre-

sponding to values of the

variable x and x + hso,

where hy and 8 a; are

finite quantities, which

are presently taken to

be small.

Let P be («, y) and P' {x + hx,y + hy). Then in the figure

MP is y, NP' Ky + hy, OM is x, ON\sx + hx; MN and KP'

are hx and hy, where PK is parallel to OX.

Join PP' and produce to any point B.

hy
Then tan d) = -^ •

hx

Fig. 78.

Let LP'PK =
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Now diminisli bic, so that i\^ approaches 31 and P' appi'oaches

P. As NM becomes indefinitely small, in general KP' becomes

indefinitely small, but tan
<f>

in general remains finite, and the

line PR takes a definite position, say PT. Let L TPK = 0.

Thentan9=L*tan</,= T *^=T ' (^l+Mzl

sbo (« + §'»)-«'

When the quantity last written can be evaluated and gives

a determinate result, the result is called the ' derived function of

/'(«) ', or ' the differeniial coefficient ofy (or ./'(«)) with respect to x ',

and is written D^y or/" («).* The process is called differentiation.

It does not depend on the graphic representation of the function.

Definition. /'(*) = I)^y= [^ — ',

Sx->0 °^

when ^ =/(«). ba) and 8y are spoken of as the increments of

X and y.

The values of this limit for several functions were found on

pp. 128-9, where // is written throughout instead of 6a'. The

following table shows these and some others.

Standard Forms.

Derived
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Nos. X to xii may be proved as follows or as on p. 199.

y=sin-^a;. .'. x = siny, x+ix = sin{y + by).

.-. Sx = am{y + by)-smy = 2c03{y + ^by) .s\n{^hy) (p. 57).

8k Bin(|82/) coB{y + ^by)'

T^ T t 8j/ t t wby T t 1 , , „ >

since Sy = ^' when 8a; =

1 , 1 1
= 1 X (p. 103) =

cosy
^^'

Vl-sin^y V\-x^

Similarly for cos"^.^.

For y = tan^'o;, 8x = tan (y + 8y) - tan y —
cos 7/ cos (2/ + 5 ?/)

(p. 57).

Oxy=J JT = \ -~-
. cosy. cos (2/ + 8y)

1 1
= 1 X cosyx cosy = —5- = -

sec-'y 1 + x-'

The limiting position of Fit in the figure on p. 191 is

defined to be the tangent to the curve at the point P. The

process of finding it is equivalent to that in Co-ordinate

Geometry (p. 156), where a line y = mx + i meets a curve in

two points whose abscissae may be written x and x + bx, and

the value of m is found when the roots are equal, i.e. when
8«;= 0.

Thus _/'(«) = tan 8, where 6 is the inclination to OX of the

tangent to the curve at (x, y). tan Q is called the gradient of

the curve.

The relation between the direction or gradient of a curve and

its derived function is best realized from an example.

Take the curve y = sin x, where x is in radian measure, and

below it draw the curve y =/' [x) = cos x (Standard Form vii).

The value of /' (x) for any value of » = gradient of sin « for

the same value of x.

HS5
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a;

Radians
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From X — to tv — ^tt, /'(«) is positive and /(«) rises. At

x = Itt, /'(«) = and /(») is horizontal. From x = ^-n to

X — l-ir, ,/'(«) is negative and f{x) falls. The fall is steepest at

X = w, when cos «; is a minimum. The sine curve crosses the

axis at an angle of 45°.

[By reference to the figure on p. 70, where the three func-

tions sin X, X, and tan i- are represented together, it is to be

noticed that their derived functions, viz. cos x, 1, sec^«, are each

I when * = 0, and the three lines make the same angle (45°) at

the start. 1

The equation to the tangent to the curve // =/(a^) at the

point («i ^i) is y-^^:=z {x- x^) x/' («i) (p. 1 3 6 (E))

,

where /'(a'j) means the value obtained by writing the definite

value a'l iny'(»).

Thus the tangent at (x^ j/j), a point on the parabola y = x^, is

y-^i = (x-Xj)x 2x^, for f{r) = a;^

f'(x) = 2x (Standard Form i), J'{a\) = 2^;^.

Since x^^^ y^, this may be writteny+^i = 2xx.^^ (cf p. 158).

Rules foii DiffEKEMiATioN,

Differentiation of a Function of a Function.

If y = i\u), where u = f{x), then B^y = D^u x D^y.

For when x becomes « + 8«, let u become « + 8?^ and y become

y-Vly.

hy_ _hu_ ^'by_ _ {a + l%)-n
^ (y + by) -y

bx bx bu bx bu

_ f{x + bx)-f(x) F{u + bu)-F(u)

bx bu

while bx, by, bu are still finite.

When 8a; approaches zero, so do bu and 8^.

Proceeding to the limit,

T t 8y ^ T t f{.v-hbx)-f{x) T t Fju-^b ll)-F{u)

••• Dxy^D^uxD^y (I)

2



196 SECT. VII. DIFFERENTIAL AND INTEGRAL CALCULUS

Examples. Let y = log^a;^ = log^tf. B^u = D^ (a;*) = 2x;

.•. D^y = 2a- X - = 2x X —^ = - •

^ u jb" .r

Let y = sin (log^a;) = s'mu. D^u = l>^\og^x = -
;

Z),,?/ = i)„8inM = cosw.

.•. D^y = - X cosM = - . cos{loggx).

Particular Cases. EfTect of Constants.

When y = i' ('«) = n + k, where k is constant,

. , _ -r t i^(?< + 8?0-i^(«) _ J t (« + 8// + /^)-(w + ^) _

and Dx{f(x) + kj =D^{f(x)} =f'(x). . . . (II)

Tins is otherwise obvious from the consideration that the curves

y =f{x) + k and y = f{x) differ only in their jDOsition relative to

the axis of x and are parallel throughout.

TF/ieti y = F{ii) — ku., where k is constant^

n ,,-T t'^O' + ^w)-'^" _ 7.

and Dj{k.f(x)} =kf' (x) (HI)

Example. Let y = 6 tana:; then Dxy = 6 sec^x.

When u =.f(x) = kx, B^u = k. D^y = k B^^y.

D;,P(kx)=k.DkxF(kx) (IV)

Examples. Let y = sin a;" = siuji-oTra; radians.

^^y = TFo'^cosa;''

Let y = ef'"^. D^y = ke^"^.

When u =fijr) = x + k, B^u = 1, and B^y = B^y.

.-. D,F(x + k) = D^+kF(x + k). . . . (V)
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Example. Let y = sin(,i;+3); then D^y = cos(j/ + 3).

A little consideration will show that these results can be

combined.

Example. Let y = 4sin(aa; + 6); then D^y = 4acos(aa! + J).

NP = ^N(,

While Rule II relates to the shifting i-elative to the axis of x,

Rule V similarly deals with parallel curYes equal in all respect?, but

differing in their position relative to the axis of y.

Rules III and IV deal with curves related as an ellipse is related to

a circle (p. 167).

Thus (Rule III)
2/ ( = 0(3) = a:2, y {_= OP) = ^x\

If when X = ON, y = NQ, SP in the two curves,

The rule gives that the

gradient in the curve OP
is half that in the curve OQ.

Again (Rule IV), let

y = (2a))2 be the curve OR.

If when

y = OM, x'= MQ, AIR

in the two curves,

{2MRf = OM = {MQf,

and MR = ^MQ.
The rule gives that the

gradient of the curve OR
at R is twice that of OQ at Q, where the abscissa of Q is twice the

abscissa of R.

If a curve, as ?/ = x^, is first diawn with units of abscissae and

ordinates equal, as OQ, and then with the vertical scale halved

(shown as (1), (2), (3) ... on the scale), we obtain such lines as OQ, OP
representing the same equation. Halving the veitical scale clearly

flattens the curve, and the two representations are related as curves

under Rule III.

Conversely, curves y = f{x), y = kf{x) can be represented by the

same line if different scales for ordinates are used, and curves

y = fix), y = f{kx) by the same line if different scales for abscissae

aie used.
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Differentiation of Sums, Differences, Products, and

Quotients.

Sum or Difference.

If y = F{x) =/i (x) +/, (a;) + Mx) + ..., where f„U U...
are any functions, then

\-i hx

= f/ (x) ± f/ (x) + fg' (x) + . . . (p. 105) . . . (VI)

Example. If y = a + bx-cx^ + dx^, D^y = 6 - 2 cas + 3 rfa;^.

Product.

If yrri^-Or) =/,(«;)x/,(*),then

j^// . ^T t /i (a; + 8a;) x .^ (a; + 8a;) -/; (a;) x /^ jx)

^ ' X—i bx

_T t {fii^ + ^^)-AW }./2(^ + 8a;) + { /,(a; + 8a;) -/, (a;) } f,(x)
- JL 8a-

identically,

D, {fi(x) xf,(x)} = f/(x) .f,(x) + f/(x) . fi(x). . (VII)

Examples, li y <= k". sin x, J)^y — «aj"~^. sin x + cos re . x":

If 2/ = sin CB . cos x, D^y = cos x . cos a; — sin k . sin x = cos 2 a;.

If «/ = aa; . sin 2 ai, 7)^1/ = o sin 2 a; + 2 aa; cos 2 a;.

Qnotient.

li y = F{x) =f,{x) ^/^{x),then

-L> 6.i'.,/2(« + 8a;) ./^(a')

identically,
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Examples. If »/ = tan a; = '-—'-

cos a;

cos X , cos a; — ( — sin x) sin a; _ ^

(cos xY

Obtain VIII from VII, treating -r-r-i: as a factor, using Eule I

and Standard Form i, with Flu) = - = u-'^.

Inverse Functions.

If y =f(ii;), it is often possible to express « as a function of y,

say X = l'(y).

Tiien if the increments 6a; and 8y are made to any pair of

values of a', y,

&x bi/
, ,-X-=l, always.

the limits being taken when 8», b^ tend together to zero.

.-. DyXxD^y^ 1 (IX)

Example. If y = sin"'*:, x = siny.

.'. Z) (sin 2/) X Da; (sin"' k) = 1.

But Z>j. (sin y) = cos y (Standard Form vii).

.". Z)xsln~^a; = = —
, as already found.

cosy -Jl-x^

Similarly, forms iv, v, xi, and xii can be obtained from ii, iii, viii,

and ix.

The twelve standard forms and nine rules now given are

sufficient for the differentiation of all the explicit functions,
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which have been so far used in this book, which (together with

the hyperbolic functions, p. 247) are those generally included in

elementary mathematics. Complete facility in using them can

readily be obtained by practice. The examples in the following

set may suffice.

Note. In the sequel log x stands for log^ w.

Examples.

I. Find from the definition the derived functions in the following

cases ; draw the graphs of the functions, and compare the gradients

at various points with the values of the derived functions :

(i) cos2w; (il) tan2aj; (iii) 2 sin9; + 3 cosc»
;

(iv) 2a;2-3a; + 4;

(y) 3x^-ix; (vi) i; (vii) -?-^ ;
(viii) 2 Vl-^x^. [Expand

by the Binominal Series in powers of A.]

IL Diiferentiate the following functions, using the standard forms

and rules. [The forms are referred to thus : iii, and the rules

thus: IV.]

1. 4a;*-5a;2; i, III, VI. Eesults: (16£c3- 10a;).

-^>-
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14. sina;.cos2a!; VII. {cosa!(l -6 sm^a;)}.

15. —^; VIII. ( , ^o\2 ')-x+3 V (as + 3)2 ''

16. log {x + V^^^). ( .J—J •

17. sin 2a! + 2a;. (4cos^a;).

18. tan-i"'. (V^)-
19. log (cos a;). ( — tan x).

20. sin a; - a; cos x. {x sin a:).

21. a;(log3J-l). (loga^).

22. cot a;. (-coseo^ie).

23. secx'. (sec a; tan a;).

24. coseca.'. ( — cosec a; cot a).

, 9-y.2 4,n2

^'/a:2 + a2^

26. cot~^T

Va

vrTa;2)'

27. log (tan ie). 1-1-).

28. a; v'^2~+ 'a2 _ a^. log (^tan (i cot- 1 -)) . (2 ^^^2:1^2).

29. (sin2 a; + 2) cos a;. ( — Ssin^a;).

30. tana; — a:. (tan2a!).

31. ^tan2a; + logcosa;. tan^a;.

32. ^tan^.-): — tanaj+ a;. tan*a;.

33. asin-i?:-y^^3^2. (
/^Z+^)

.

a ^'SJ a-x'

34. tan-i
Viax-a^

35. a: tan a; h log (cos a;). (a! . tan2a;).

36. cot2a; + icot3 2a;. (-2 cosec* 2a;).

37. «-^(cos2a;-sin2a'+ 2). (- 5«-^ cos^a;).

38. «^(a;3-3a;2 + 6a;-6). {e^ .x^).
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Implicit Functions.

If y and x are connected by an equation of the form y =f{x),

where f{x) does not involve y, then y is an explicit function of

X. But if X and y are connected by an equation of the form

_/(«, y) = 0, where /(«, y) depends on both x and y, then y is an

implicit function of x. In both cases the equation represents

a locus where [x, y) are the co-ordinates of a point. In the first,

when X is known, there is only one possible value of y (as in the

case of the parabola y = x^), if / is rational in form ; in the

second case there may be more than one (as in the hyperbola

x^-f-l = 0).

We deal here only with implicit functions in which, when

an increment of x is diminished to zero, the corresponding incre-

ment oi y also diminishes to zero; thus in Figure 78 we assume

that as iV^ approaches M, JP'K tends to zero.

We also assume that y is capable of expression as an explicit

function of x, though the function is not actually worked out,

and that therefore B^y has a meaning.

Let u =f{x,y) = 0, and let the pairs of values (x,y), (x + bx.

y + by) satisfy the equation. Then 8«, the change mf(x,y) due

to the increments bx, by, is zero, since ti is always zero.

For example, \if{x,y) = Ax^ + By^ — 1 = 0,

= 6 ?« := S (Ax^ + £y^-\) = b (Ax^) + b {By^).

Divide by bx and proceed to the limit when 8a; = 0.

by Rule I,

::='iAx+2By.I)^y.

•• "^^y— By-

Then, as on p. 195, y—y^ — (x— x^D^y touches y(»,_5') =
at {x^y-i).

In the case just taken, y — y-i
= (a; - .Xj) (—g-i^

Equation of the tangent at x-^^, yi is Axx-^^ + Byy-^-= Ax-^ + By-^,

i. e. Axx-^ + Byy-^ = 1, since (wj
y-^f

is on the curve. (Compare p. 158.)



MAXIMA AND MINIMA 203

Again, in the equation xy-t'' = 0,

= Dx{o:y-c^) = yDxX^-xDxy = y + xD^y.

D.y^-y.
X

The tangent is 2/ ~ 2/i
= ~ (^ - ''i)

*i

^Vi + y^i = 2a;i2/i = 2c2.
'

In the equation ax"^ + 2hxy + by^ + 2gx + 2fy + c = 0,

2ax+2h {xD^y + y) + 2hyDxy + 2g + 'IfDxV = 0.

The tangent is (y - j/j) i^x^ + iy^ +/) + (a; - 3'j) (aa\ + 7«/i + (/) = 0,

which is easily shown to be equivalent to

axx^ + h. (xyi + yxj) + hyy^ + cj{x + x^ +f{jj + ?/i) + c

= axi^ + 2 Aa;i2/i + hy^^ + 2(jx-^ + 2/2/1 + c = 0. (p. 1 86, Ex. 3.)

Examples.

1. If xij"- is constant, -Da;'/ = —^•

2. If a;' - 3 aa^y + i/S - J3 _ g^ l^xV = {fly
- ^^)/(2/^ ~ o^')-

3. If {x - yY {x + yf - ir' = 0, B^y = (Sa' - y)/(5»/ - x).

, -.. „ ._, tan 33(4 cos a;- cos y")

4. It cos a; cos V — 00s 2 w = cos a, DxV = -. •
^ "^

sin 2/

Maxima and Minima. Second Dedived Function.

From the definition of a limit, and of a differential coeificient,

"by
-i = f {oc)-\- i, where e can be made as small as we please by
ox

diminishins;' 8a;. Take S« to be positive, as usual.

.-. hy -f'{x).lx + i .h.,'.

\if (x) is positive, hy is positive, since e . 8a; can be taken so

small as not to affect the sign of the right-hand side of the

equation.

Similarly, if /' («) is negative, hy is negative.

Thus as X increases, /(a;) increases if /'(«) is positive, and

decreases iif'{x) is negative.

If /'(«) is zero, hy is zero, and/(«) is stationary.
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[In Figure 81 8a; is PK, htj is KP',f'(x) = tan(/) = tau QPK.

P'K = KQ + QP'= PKi&n </) + QP'.

by = bx. ia.n 4, + QP'.

QP' is therefore e . 8a3.j

-^
Fio. 8L

Letf"{x>) be the deiived function oi/'{as), i.e. let

1 W - JU TZ,
«a;-+(J

hx

-7d-

__Je

Q

f

•'' Der'RKd.otjrue y =f'(x)

Fig. 82.

/'(«),/"(«) ai-e called the first and second derived functions

of/W-
By similar reasoning, as « increases, /"(«) increases when

f" {so) is positive and decreases when/"(«) is negative.
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[In Figure 82 f {x) is positive and f{x) increases from K to L,

JS to P, and P to Q ; f {x) is negative and f{x) decreases fi-om

L to N
; f{x) is zero and f{x) stationary at L, K, and P.

Again, from K to M f (x) decreases, and f"{x) must be negative.

f{x) becomes less steep positively or steeper negatively. ABG is

concave. From M to 0', f{x) increases, f"{x) must be positive,

CDE is convex.

Compare the graph of sin x and its derived function ou p. 194.]

If /"(«) is negative between se-^ and x^ {x^ > x^, then/''(a;)

decreases between a-j and x^, and if at some value ;/, between

a'j and x^.f {x') is zero, it follows that /'(«') is positive from

x-^ to x' and negative from x' to x^ \ therefore /"(«) increases from

a^j to x\ is stationary at x\ and decreases from x' to x^. Hence

if _/"(«') is negative and /'(«') zero, /"(«') is greater than the

values on either side of it. In other words /'('•') is a maximum

value of/(«).

[In Figure 82 OK, OL, OM may be taken to be x^, x' , x^.

On the other hand, if /"(«') is positive when /'(«') is zero,

/(»') is less than the values of/ {x) on either side of it, and f{x')

is a minimuw, value o{f{x). [031, ON, 00'.^

If, when _/'(»') is zero, f"{x') is also zero, no conclusion can

be drawn as to the existence of a maximum or minimum value

without using a higher derived function. [P.]

The argument is independent of and does not postulate the

possibility of graphic representation, but its nature is most easily

comprehended from Figure 82.

Hence, to find the maxima and minima of a function of one

variable, solve the equation f' {x) = 0. If it is not evident

ajjriori whether/(x^), Xy being a root, is a maximum or minimum,

test the sign of/"" {x-^.

It is nearly self evident that, as x changes, maxima and minima

succeed each other alternately.
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Examples,

1. Required the maximum product of two quantities whose

sum is k-

Let OS and A; — a; be the quantities

f(x) = X- (A - a;) = te - x^,

=f'{x) = h-2x,

x' ^ ik, fix') = ^k\

f"{x) = — 2, negative.

Hence ^k^ is a maximum.

Here the second differentiation is unnecessary, as it is evident that

a maximum exists and no minimum except — oo .

2. Let f{x) = 3i<?-5x^-llx-10. (Figure, Section IV, p. 94.)

=/'(») = 9«2_i0a;-lL a; = i(5± VTH) =1-79 or --68.

/"{x) = 18a;- 10.

,•. f"{\-79) is positive, and a; = 1-79 gives a minimum,

/''( — -68) is negative, and x = —68 gives a maximum.

Note, f" (x) = if k = |^. Here f'{x) is a maximum or mini-

mum, and since f"'{x) = 18 and is positive, it is a minimum, i.e.

the curve has greatest downward slope at a; = f

.

Find the maxima and minima of the following functions, veri-

fying the results by rough graphs :

3. (a; -1) (a; -2) (a; -3). 4. a;* - Sx^ -h 7a;- 8.

5. 2 sin a' + 3 cos K. 6. xloa.v. 7. -•
^^

3a; -2

8. The volume of a rectangular solid, the sum of whose edges is

given, is greatest when it is a cube. [Whatever length is taken for

one edge, by Ex. 1 the volume is greatest when the other two are

equal.]

9. The maximum volume of a rectangular tolid, whose total surface

is given, is a cube. [If A, B, C are the ai-eas of the faces and V the

volume, F2 = ABC. Then use Ex. 8.]

Integiution.

Integration is the process of deducing the original function

when the derived function is known.

f[x) and f{x)+G, where C is a constant, have the same

derived function, viz. /'(«).
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6. sec^ {bx + c).
J tan {hx + c) + C.

7.
,

• sin"-^ - + C.

8.-4-2- --tan-i?+(J.

The forms just given are those for which the integral function

is simplest. If we start at the other end of the problem and

try to find the integral function of the simplest derived func-

tions, we have to devise methods whose justification is theii'

success. Such methods have been found for very many, but not

all, simple functions.

A special notation is in use for the problem of integration,

which originated from the relation between integration and sum-

mation shown on p. 213. y, a form of the letter «, is called the

sign of integration. If ^{x) is written for /'(«), then /(«) is

the integral function for <\> (x). This is written

f<^{x).dx=f{x)\C.

The insertion oi clx is explained on pp. 213-14.

This is not a proved equation, but only a convenient way of

putting the general statement, ' ^ (x) is the derived function of

f{x) ' when <^ («) is known andy(a;) is to be found.

«,»+i
Thus, /a'Vte = + C.

w + 1

The following are important integrals. The reader should

confine himself to assenting to the correctness of the steps taken,

without considering why the particular path is chosen. The

processes can be verified by working them backwards.

J d'— x'^ J 2a^a—x a + x^' 2a
[J

a— x Ja + x)

= ^ { -log («-«')+ log (a+x)} + = ^ log^ + C.

[Here we have used the fact that the integral of a sum is the

sum of the integrals of its terms, the converse of Rule VI,

p. 198.]
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dx

- bx + cx^

Case (i) when U'' > iac. Let a + ix + ox^ = a (x— oc) (x— f3}.

a. and j3 are real.

J c{x— 0(.) {x— j3) cj oc — jS^x— oc x— ji''

_ 1 ^ r dx
f^^^ \_ 1 1

*~°'
^

(0i-l3)a V -i^-oi
~ Jx~pJ "

c{(x-P) °^«-/3
"^

1 , x— a. „ 1 , 2cx + h— k .-,

loff + C = =- log
. , , , + 0,

^U^-i^ao °<B-^ k *=2cx + b + k

where P — i^ — 4ctt'.

Case (ii) when U^ < ^ac.

r i/x f dx _ ^ r
'^^'

la + dx + cx'^"] ( b -^ 4Lac— b'^~cJx"^+d
K«' + ^) +

4c

where x = * H , and .•. ox = ox, and a -.

2c' 2c

1 ^ _, ,/ ^ 2 ^ ,
2ca; + i5 ^= --; tan ^ -- + C—-^= tan-i —=^ + C.

"* « ^iac-b'^ V^ac— b''

Case (iii) when h'^ = 4flc.

1 2

/ b \^ / 6 •, 2cx + b
ctx -\ ) clx -\ )

1:7^

11. t&nx.dx. Let «' = cos «. Then 8»'= — sina. 8;?;./r dx'
tan X . dx — I 7- = — log x'+C— — log (cos x) + C.

-.^ r ^"^ r sec^ hx , nix' / , 1
1 2. / -; = / -^— dx = —j- , where :i; — tan *x.

J smx J 2 tan ^x J x

= log (tan ^x) + C.

13. / cos^iB .dx — i ^ (cos 2a;+ 1) . dx — -^ sin 2x+ \x+ C.

14. / Ja^— x^. dx.

Let X = a sin 9, 8« = «cos0 . 89.

1435 p
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fVa^-x^.dse = a^ fcos^ 6.de= a^i^ sin 2e+\6 + C)

. X= |« ^d'-x^ + - sin-1 - + C.

clx
15. / —.

'''^

• Let X = acot 6

Expression = — /
'-— — — log' ftan -") + C from Ex. 1

2

^
J cosec 6 ^\ 2^

= logeot(icot-i|) + C.

16. ysinaa; .cos hx . clx = -lyisin (« + 5) « + sin {a— b)x} clx

cos {a + b)x — cos [a — h)x+C.
2{a + 0) ^ ' 2{a-b)

clx—== = log^ {x+ '/x^— aF) + C, as can be verified by
V a;^— aP'

differentiation. (See p. 201, Ex. 16.)

Examples.

1. f{ix'^ + 3x'^ + 2x)dx. {ai^ + a^ + x^ + C).

/x + 2'

-dx. {a; + log(a!+ 1) + C}.

^•/S^* [Write a;^ = «.J {| log (x'' + a^) + (7}

.

4. MO*^c?£c. (i-lO^^logioe + C).

5. jsiaSxdx. (
— |^ cos 3 a; + C).

6. sin^xdx. {i(£C — sin cccosaj) + C}.

7. j sin'^xdx. [Use formula sin 3m = 3 sincK— 4sin8a;.]

(
-

;| cos a; + ^-^ cos 3a; + C).

8. / cos^ X dx. (^ sin as + Jj sin 3 a; + C).

9. secx . dx. Write tan - = <. {logtan(^Tr + ia;) + C}.

10. / sin a; . sin 2 .T cia;. ( — l^sinSx + Jsin a;+ C).
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11. / cot K dx. [Write sin x = a;'.] {log (sin x) + G}.

^^•/m- [Write .3=.,] (ita„-J%^).

13. r_z^ "Write x = a tan 6'tan 0~l , /-

(Va ' + a^ + C).

J x^ + 2x+ 1

16.
dx

17

18

19

20

21

22

J x'' + 2x+2'

xdx

x*+16'

dx

5a;2

r 2xdi

7 .T* - 1

2 + 3a;-

L
. {x + a)f c/.T.

C^K.

K^— 3£t;+2'

{tan-i(a!+ 1) + C'J.

(|tan-llcB2 + C').

{ilog(a:2-a2) + C}.

x-l 0).

{i{x + af+G}.

23. Isec'^x.dx. [Write tan^w = tj (tana; + itaii3a;+ C).

Integration by Parts.

If u and 2! are functions of x,

Dx (uv) = uDx V + vDx u.

.. ?<i)a;f = Dx(uv) — vl)^ti, for all values of a; ; and therefore

the quantities of which the left- and right-hand sides are derived

functions differ only by a constant.

.•. /iiB^v .dx -^ / {D^ (nv)— vJ)xw} dx + const.

— fB^itiv) .dx—fvO^u .dx+ consi. — uv+C— yvD^u.dx.

This formula is of frequent use when we have to integrate

a function, one of whose factors we recognize as a known
derived function.

p 2
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Examples.

1. fxsin xdx. Let u = x, v = — cosw.

/x . sill xdx = x{-cosx)—y{— cos x) . 1 dx.

= —X cos x + Biiix+ C.

2. yiog X . dx. Let u = logx, v — x.

./"log x . dx = x\ogx -fxDx log x .dx = log a; —fx . - dx

= X log x — x+C.

3. [Vx^ + a^dx = X Vx^ + a^ - f
^"^

dx.
J J Vx'^ + a?'

But —
/ ,

dx = — —
,

dx
J Vx-' + a^ J Vx'^ + a^

= _ f^^^T^i dx + a2 f-~^= •

J J Vx^ + a^

.'. 2 / Vx^ + a^ dx = xVa^ a^ — a^log ^tanficot"^ -)[•

4. fsin^xdx. Let u = sin^a;, v = —cos a;.

ysin^a; .dx=— sin^a; cos x —y ( — cos a;) (2 sin x cos a;) c^a: + const.,

= — sin'^a; cos x + 2fs\n a; (1 — sin^a;) dx + const.,

= — sin^a; cos a; + 2 y"sin a; liaj — 2 ysin^c^a; + const.

.'. Sysin^a; . cia; = — sin^a; cosa;+ 2ysin a; . tZas + const.

. . ysin^a; . dec = — J sin^a; cos k — § cos x + const.

5. y sin"a; .dx=— sin"~^a; cos x

—y ( - cos x){n-\ sin^-^a; cos x dx),

= — sin"-^a; . cos x+ (n— l)y sin"-^a; (1 — sin^a;) dx,

= — sin^-^a; cosa; + (n—1) f /sin"-^a;(ia;— /'sirx'^xdx].

J n n J
This process can be applied again and again, till the expression is

completely integrated, when n is a positive integer./I _ . n—\r
cos"a; .dx = — cos^^^a; sin x + / cos"~^a; . dx + C.

n n J

7. y e^ cos xdx = e^ cos a; +y «^ sin x dx

= e^ cos a; + e* sin x —fe^ cos a; dx.

. . fe"^ cos xdx = ^e" (sin a; + cos a) + C
8. ye* sin xdx = !«'' (sina!-cos a;) + C.

e«a! gin ^jjj + c) dx = —^—-^ [a sin {hx + c) — h cos (6a! + c)} + C.
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Ri

Definite Integrals. Integration and Summation.

Lety(a;) be such that it can be represented by a graph, CB.

Let OA = a, OB = h,

i\^&nAC=f{a),BI)^f{h).

Let hoo = — ) and cut
n

off AN„N,Ii,...N„_,B
each = hco. Then

b = a + nhcc.

Let A\P^, N^P^, ... be 5—
ordinates of the curve.

Complete the two sets of

rectangles AQP^N'^, N^Q^P^N^,... and ACE^N^, N^P^B.J^^,

as in the figure.

First suppose that the ordinates increase as x increases.

Let S, S" be the area of the rectangular figures

ACB,P,B,P^..., and AQP.Q^P.Q, ... B.

A Ni N, Na

Fig. 8*.

B

S =biv [/(a) +f{a + bw) +/{a + 2bx) + ... +f{a +n-lhx)],

S' = bco [/(a + 8*) +/(« + 2 8a;) + ...+/ (a + nhx)].

S'-S = bx {f(a + nb!K)-f{a)} = bx {f{b)-f{a)}

= EB X bcB,

where CB is parallel to A B and meets BB at B,

= BBxAB-i- n.

Let (j) («) be such that 0'(a;) =f{x) for all values of x from a

to ^ ; i.e. </) {x) = ff{sn) dx + G.

Then <\,{a + bx)-<^{a) = bx {^'{a) + (^} (p. 192, definition of

limit), = 8«{/(«) + Ej},

<i,{a+2bx)~(\>{a + bx) =bx{f{a + bx) + e^\

(l>{b)-(l){a + n-lbx) = 8a; {/{a + n~lbx) + e„_^}.

Adding,

.-. <l>{b)— ^{a) = -5+ 8a; (fj + e^ +...+£„}, where each of the

e's may be made less than any assigned quantity by diminishing

8a!. Let t be the greatest of the e's.
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Tken 6a; (e^ + e^ . . . e„) > m . Sa- x e > ^i? X e, siace A£ = nbco,

>(5-«)xe.
Hence, if 6a; is diminished by increasing n, the number of

points of section, ^[h) — ^ (a) may be made to differ from S by

as little as we please.

But S —S = which may be made as small as we
please.

. • . (p (b) — (l){a) is the limit both of S, S", and of any areas

intermediate between them when n is increased indefinitely.

If we define the curve (compare p. 66) as the limit of the recti-

linear figure CP-^P^ ... D, then <p {i) — ^ (a) is the area included

between AB and the curve CD.

If the ordinates first increase and then diminish, or vice versa,

the ai'gument that </> (6)— ^ (a) is the limit of S is unaffected

—

whereas in the case taken all the e's were positive, now some

would be negative—and it is easy to see from a figure that

S'— S tends more rapidly to zero.

The process is generally written / f(x) . dx = \<j){x)\ • The

left-hand side is called a definite integral, and a aud b the limits of

integration.

Example. To find the area of part of the parabola x^ = ijiy.

Let be the vertex, PJV, PM perpen-

diculars on the axes from a point on the

curve. Let ON = h. Then NP = — •

Let fM = ~.

Then
<t>

(x) = //(x) dy + const. = -—

+ const.

^'°- ^^-
Hence the area ONP = <)>{b)-(t> (0)

and thence the area OMP = ^ON. NP.

The constant of integration may evidently be omitted in the work.
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The use of definite integrals is not confined to areas, as the

following examples show.

To find the volume of a sphere.

Let OA be a semi-diiimeter and the axis of x. Let a be the radius.

Let ON =x, NN'= hx.

Take sections of the

sphere, perpendicular to

the axis of x, namely the

circles on PQ, P'Q' as

diameters.

Draw PL perpendicular

to N'P', and P'K to NP.

Suppose two cylinders

constructed, each with axis

NN', one with radius NP,
the other with radius NK.

The volume of the zone

of the sphere bounded by

the circular sections is in-

termediate between those

of the cylinders LPQ
and P'KQ', that is, inter-

mediate between iiy^ . Ix

and IT (?/ + hyY ^x, where

y = NP, and x^ + y^ = a^.

Suppose successive elements 8 a; cut off from io A and two

cylinders constructed on each element. The hemisphere is inter-

mediate in volume between the two sets of cylinders.

As on p. 214, it can be shown that in the limit, when 8a5 is

diminished, the three volumes, hemisphere, sum of outer and sum of

inner cylinders are equal.

Hence the volume of the hemisphere is / •ny'^dx, and of the sphere
JO

FiG. 86.

Q

2r'77(a2 - x^) dx = 2tt ?i:--(«'-i)=4'3 J

Example. The volume of a right circular cone is ^-nr^li, where r

is the radius of the base and h the altitude.

[Take the axis of the cone as axis of x, and proceed as with the

sphere.]
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Examples.

1. Evaluate / {a^ + 3T)dx, / sin a; da;, / 10^. dx, / — •

2. Find the area of the ellipse — + ^ = 1.

r 4r--/a2-x2.dr.1

3. Find the area of the curve y = e* from x = to — oo.

Deduce the area of y = loggiB and y = logjQjc from x = to 1.

[1, 1, .4343.]

4. Find the area of the hyperbola -s — tit = 1 from aj = a

to a; = c. - c V c' — a** — fflo log
a a

Differential Equations.

It is proposed to give a few examples illustrating the solution of

equations involving the diiferential coefficient.

If a moving particle is at a distance y from a fixed point in its path

at a time x, its velocity may be defined as

ox

and its acceleration may be defined as D^v =/'(") =/"(«).

Example 1. Constant acceleration a. f {v) = a,

V = J'adx + C = ax+ C.

K V — u when a; = (initial velocity),

u = ax + C.

.•. V = ax + u

[or if V is the velocity accumulated from zero time to time t

V =
I

adx = \ ax \ — a<].

Again, JDxy —f'{^) = v =ax + u,

y = y("^ + **) ^'^ = ^ax"^ + IIX + C.

If y = when x = 0, this becomes 2/ = | ax^ + ux
[or if y is distance from zero time to time t,

y =
j

(ax + u)dx =\iax^ + ux =ut + ^afi~\.
Jo L Jo
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Example 2. Acceleration towards a fixed origin and proportional

to its distance from it. [Simple harmonic motion.]

Then the velocity increases as y diminishes, and

DxV =/"(») = —^2/1 ^ positive.

Multiply both sides by v. v . DxV = -IcyDxy.

.-. /{vDxv) .dx = -/kydy + const.

... ly^^-^Uf + C.

h
If u = when y = a, = - -a^ + G.

.
•

. v'' = k(cfi — y^).

l^xy = I' = >/ d'^-y''' . \/k.

X = / —7= , = —rr-. sin ' - + V.

J Vk /a'^-y'- Vk «

.•. y — asinl^Vlc .x + C).

Example 3. Acceleration negative and varying as velocitj'.

[Possible law of motion in a resisting medium.]

D^v = -kv. .-. D,,x = —~ ; »=-/ — =- -log v + C.
— kv J kv k

If « = M, when a? = (initial velocity), C = ylog ii
;

K

\ . U ,

x = -log — ; V = UR'^"

;

y = ue-'^'' dx = - je-^'' + C = ^ (1 - e-^'') i{ y = when x = 0.

Notice that if x is increased indefinitely, the moving particle comes

to rest after ti'aveiling a distance y

Examples.

1. Find the velocity after time t, and the distance described in

the time, of a particle projected vertically upwards with velocity u,

the retardation due to gravity being taken as constant (g).

2. A bod)' is projected with velocity u and is subject to an

acceleration g — kv^, where g and k are constant. Find the velocity

which it tends to obtain when the time is indefinitely increased.

[ Terminal velocity.]
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3. Solve the equations

{') l^xy = ax + h. (ii) DxV = aa;^ + hx + c.

(iii) D^y = a sin a;. (iv) D^y = e^smx.

{^) yDxy = 2 a. (vi) (y + a;) (1 + D^y) == x\

[Pat y + x = z.'\

a?
(vii) sec2 y.D^y = sin x. (viii) {D^ yf = jZI^i

(ix) Z)j,.y = 2/ tan x. (x) - Z>a;(- i>cc»/) = «•

Partial DifiFerentiation.

Treliminary illustration. If y is the pressme of a given

quantity of gas, u its absolute temperature, and v its density,

then y = k .uv for all variations of pressure, temperature, and

density over a certain range, where .^ is a constant. If incre-

ments 8 u, 6 1', hy take place together,

y + hy = k{v,-\-hv) {v-k-hv).

.-. hy — k{vhu-^uhv)-\-hlu.hv (i)

Suppose that u, v, and therefore y are functions of a third

quantity x (e.g. the time during which the gas is subject to

experiment), then

hy , / hu hv\ , 8m ^
-^ = k{v -—-\-u-') Jrk.--.hr.
hoB V 6a; 8«^ 6«

Now let 8a; tend to zero with the other increments, and we

have Dxy = kv.Dr^ii + kuI)r^v (ii)

Returning to equation (i) we see that [when, as in equation (ii),

ou.hv is neglected in comparison with hu or hv\ by is the sum

of two parts, viz. kv.hu, which is the increase due to tem-

perature and is the same as if the density had not changed, and

ku . hv, which is the increase due to density, and is the same as

if the temperature had not changed.

kv is the result of differentiating y with respect to u, in the

case where v is constant.

ku is the result of differentiating y with respect to v, in the

case where u is constant.
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Such a differentiation is called partial. We may write it thus

:

B^y = kv ; B^y = Im.

V const. M const.

Equation (ii) is then

I>xy = ^v.y 1^x11' + D^y .B^v. . . . (iii)*

V const. u const.

Equation (ii) shows that in this case the whole rate of change

(B^y) is the sum of the rates due to change of temperature and

change of density taken separately.

Equation (iii) can be shown, as follows, to be true whatever

function y is of u, v. The proof cannot be made easy, without

inaccuracy.

Let y = F[u, v), where u and v are both functions of some

variable x. Let none of the differentials become infinite in the

processes.

Let an increment hx result in increments hu, hv, hy.

Then hy = F(u + hw, v + hv) — F{ti, v)

= {F{w + bw, v + bv)~F{u, v + hv)}

+ {F{u, v + hv) — F{u, v)], identically,

= A + B, say.

Choose a subsidiary function to express the effect of a change

hit ra F (ii, v) when v is unchanged, thus

* (n, v) =F{u + hu, v)-F{u, v).

A = F{u + bu,v + hv)-F{n, v + 6^-) — $ («, v + hv).

Now consider the change in $ when « is kept constant, and v

receives an increment hv. By the definitions of p. 101 and p. 192,

<J> {u, V + hv) = * (u, v) + hv {B^^ (u, v) + i}.

u const.

But ^ {ti,v) — bu {By^F{u,v) + /} and for all values of n
V const.

contains the factor bn. Therefore an increment of i> {n, v) con-

tains the factor bn, i.e. B^<b{i(,v) contains the factor 8?;, and
« const.

may be written bu x K, where A' is a finite varying quantity.

.-. A =. ^{u,v + bv) = bu {B^^F{i/,v) + f'}+hv{huxK+e}.
V const.

* This is often written — = ^- hr-- — ,3 signifying partial differ-
dx du dx ^v dx

entiation and d complete differentiation.
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Also B = F(u + bu, v)—F{n, v) is the increment obtained in

F by increasing v without altering u,

^hv{I)^F{u,v) + /'\.

u const.

.-. h9j= A + B = 8m [B^F* + i'l + hv {B^F+i")
V const. M const.

+ bu.bvxK+(.bv.
Divide by bx and proceed to the limit when 8 m, bv, bx, by

vanish.

In limit e, e', e" may be neglected, and we have

Dxy = D„y.DxU + Dvy.Dj,v.
V const. u const.

In particular, \i u — x, Dxy = Dxy + Dvy • DxV, where y is

V const. X const.

a function of v and x, and t; is a function of x.

If we have the locus f{x, y) = 0, write z for /" («, y). Then

is constantly zero and has no increment.

.-. 0=B^, = B^f+ Byf.B^y,
y const. X const.

J ..^ Dx f (y const.)
and Dxy = ^

—

— •

Dy f (x const.)

The tangent at {x-iy-^ to f{xy) = may be written

{x-x.,)D^f+{y~y^)Dyf=Q,

when x^ and y-^ are written for x, y in the derived functions.

Thus in

ax'^ + 2hxy + hy'^ = 1, Dxf = 2ax+2hy, Dyf= 2hx+2hy;
y const. X const.

the tangent is (a; - x-^ («,rj + hy-^ + {y~ 2/i)
{^tx^ + hy-^ = 0,

axx^ + h [xy-^ + yxj) + byy^ = aXj^ + 2 hx^ y^ + hy-^ = 1

,

since x-^ y-^ is on the curve.

* Dxf is used forZ)j./(x), and generally/, or a similai' letter, is used as

an abbreviation for the function.
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Bj a similar line of reasoning we may show that if y is

a function of any finite number of variables a, /3, y, ..., all of

which are functions of a variable t, then

where :^ (for example) is obtained by differentiating' y with

respect to a, while /3, y, ... are regarded as constant. This

formula is of great importance in many applications of the

calculus.

In particular, il a — t, the first term on the right becomes ~ •

V t

Maxima and Minima of a runction of two Independeut

Variables.

Let y = l''{u, v), and therefore

hy =^ B^F . h%i + -D^2''8« + quantities ultimately negligible.
V const. u const.

y is said to be a maximum (minimum) when any small change

in u or v decreases (increases) its value.

Then unless I)^F=i there cannot be a maximum or mini-

mum ; for otherwise increasing u without changing v would, if

J5„ F were positive, result in an increase in y, and, if B^ F were

negative, in a decrease. Hence we cannot have a maximum or

minimum unless By^F = 0, and similarly unless B^F — 0. In
V const. u const.

eases where we know a priori that a maximum or minimum
exists, these equations are often sufficient to determine its posi-

tion, and it is often possible by substitution to decide whether it

is maximum or minimum. In other cases further and more

complicated equations are needed.

Examples.—(i) If y = "u? + k^ + Zauv.

Z)„y = Zxfi + Zav = 0, and JD^y = 3v'^ + 3au = 0.

V const. u const.

These are satisfied by m = i) = 0, and u = v = —a.

Taking the latter solution, iiu = — a + h, v = —a + k,

y = {- a + hf + {- a + kf + 3a {- a + h) {- a + k)

= aS-3a{h^ + k^-hk) + h-- + ki.

/, k^/' 3/!;2
.

The coefficient of — 3a = ( « — p) -f— _— and is always positive.
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A small variation from the values u = v = —a then always

results in a diminution of y, since Ifi + P may be neglected in com-

parison with h^ + k^ — hk.

Hence a maximum value of y is when u = v = — a, and y = a^.

(ii) The surface of a six-sided rectangular solid of given volume is

least when the edges are equal.

Here there is evidentlj' a minimum.

Let V be the volume, u, v, w the edges, and 2?/ the surface.

V = uvw,

y = UV + VW + lou = UV+ V( —t- - ), where V is constant,
^U V''

V
= Z)„2/ = V 2 ; .•. u^v = uvw, and u = w.
V const.

**

Similarly v = w.

(iii) Find the minimum value of

avP' + 2huv + hv'^+2gu+2fo + c.

Necessary conditions are

2aM + 2Au+2sr = = 2hu+2hv+2f.

Substituting the values thus found, say u, v, the expression = —

(pp. 176-7).

If M + Mj and V + Vi are written for u and v, the expression becomes

Y,
+ aUj^ + 2huiV-^ + hv^,

and the increment is positive if ah > W and a is positive. In this

case we have found a minimum. If ah > W and a negative we have

a maximum.

If ah > W we can proceed no further by this method.

(iv) Show that z = Ae-^'"'°'+V) has a maximum, A, at x = y = 0,

if h and k are positive.



SECTION VIII

IMAGINAEY AND COMPLEX QUANTITIES*

In the solution of the quadratic equation a,^+2i»+7 = we

obtain (x+iy ——6, and we cannot proceed further without

using a quantity (d) such that dxd=: —G. So far no meaning

has been attached to such a quantity. In algebra and trigo-

nometry as applied to arithmetic and mensuration the letters

used stand for quantities known in the physical universe, whose

squares are positive ; as soon as the notation of algebra is begun,

the statement (— a)x{— a) = a^ is either proved when a is

regarded as a physical measurement, or assumed as a law of

operation or rule of interpretation or convention when algebra

is treated as a purely abstract science.

A very great extension of mathematics, in the end of enormous

practical importance, has been made by introducing a second set

of symbols which are subject to the convention that the values

obtained by a process analogous to squaring are negative. These

symbols are said to represent imaginari/ quantities, that is, quan-

tities that are the subject of imagination or thought only, as

opposed to real quantities whose application to physical measure-

ments is direct.

It is open to us to make any rules, not inconsistent with each

other, for the algebra of imaginary quantities and to introduce

any symbols (of the same kind as X, -;-,>) we please. We
shall, however, be guided by the general rule that symbols and

operations are to have as nearly as possible the same meanings

whatever may be the quantities they affect, as we were in

assigning meanings to fractional indices (p. 2) and to angles of

any magnitude and to their ratios (p. 40). In such cases we can

either deduce rules in accordance with a convention, which we

* The treatment of this subject as far as p. 233 differs completely ia

definitions, order, and method from that generally given in text-books.
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decide that the symbols shall satisfy, as with indices, or make

rules and then show that they are consistent with the convention.

In the present case it is convenient to combine these processes.

Defluition of an Imaginary Quantity.

Let fl (a) signify that an operation has been performed on a,

producing a quantity a^, such that when a similar operation is

performed on a^ the result is —a. Thus («,) = — a, and

{0 (a)} = — a. Then a, is called an imaginary quantity.

The operation, 0, is an hypothetical or imaginary operation, and

cannot be earned out by any of the laws of algebra hitherto used.

0(1) = 1,, and n {0(1)1 =-1.

Rules defining the Use of + , — , x ,
-=- with Imaginary

Quantities.

Additio7i and subtraction of imaginary quantitien.

Rules, a^ + bt = Ci, where c = a + b, and a, ta, c are real, (i)

ai + b|,= b. + a^, and — a^^ (— a)^.

Definition. Imaginary zero is defined by 0, = a^— a^.

Multiplication ami division of imaginary quantities by real

quantities.

If i is a real positive integer,

a^ X b = fl, + «, + ... (^ terms) = (a + a + . . .)i by (i).

= d^, where d = ab. ... .... (ii)

Rule. t^ = a,^-i- b, where i is a real positive integer, is taken

so as to satisfy the condition that fy.b — a^; then, by (ii),

fl ::= J/; and f =
I

(iii)

P
Hence a, x — , where ji? and q are real integers,

= («( X7^) -^(1= 9n where 9
="-

We have then generally, a^xm = {ma)^ and fl, -=- ?» = f—j

,

where m is any positive real commensurable quantity.

For operation with a negative multiplier, we decide that

fl, X {m) + fl, X ( — m) = 0.

But 0, = (ma)^ — {ma)^ = a^xm + {— ma)^, from (i).
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Then a,x(— w) = {
— ma)^.

It readily follows that a^-^[— m) — ( ) •

If m is ineommensurable, multiplication and division by m are

defined by deciding that the iiveceding equations shall still be true.

Write Ifor 1^.

Then, in particular, m,. = (»« x l)i = 1, x ?a = i x m. . . (iv)

Multiplication and Division by Imaginary Quantities.

Particular Rule, k X t = k^ ; that is,

k X (, = k X 1^ = k^ = (k) (v)

In words, x t signifies the performance of the operation 0.

If k is real, kx i = Jc^ = ixk hj (iv).

General Rule, k x a^ == (k x IJ X a, a being real, . . (vi)

= (k) X a.

If k is real, it follows that

k X a,, = k^ X a = (ak)j from (iv). . . . (vii)

If y^ = «, [a real), a, x a, = {a) xa= — axa— — a^.

In particular, t x i = 1, X 1, = — P = — 1.

[By a loose analogy with the process of extraction of a square

root for real quantities, •/— 1 is often written for t.J

Similarly, ta^ x a^ = (b,) xa=—bxa = — ab. . . (viii)

As with real quantities, division by a, is taken so as to annul

the effect of multiplying by a,

.

Rule, {k -^ «,) X a, = k, where k is real or imaginary.

.
. ll(k -^ a^)xa — & hy (vi).

•• o{a(A-^a,)} = o(^)-

It k — i (b real), this becomes —(b-r- a) — (-\ ,

i.e. b ^^^^-ilX' (i^)

itk^b,, - {b, ^ «,) = (^) - D
( ^)^

by (iii),

^^(i \^a^=\- (x)
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It follows from the above definitions and rules that a^ can

be taken in all the processes of addition, multiplication, sub-

traction, and division as if it was a x t, where t is used just as if

it was a real quantity. Thus

ai + bt = (a + b) I, bxai = atxb = abi,

ai , ,

at -j- b = — , aixbt = ax ox ix t = — ab,
b

a -, , bi bt
ai,-T-bt=-, and b-T-ai=— =

b ail a

give the results detailed above.

If M is a positive integer, (a,)" = a, x a, X to n factors

= a"i»

where t^ =-1, i^ = -i, i*= +1, t^ = t, t^ = -l, &c.

We have given no meaning as yet to {a^'"', where ii is not

a positive integer ; this is examined on p. 230, below.

We have given no meaning to «, + b, where b is real ; this is

dealt with in the paragraphs immediately following.

The operation has a close analogy in geometry.

Let a distance a be measured to right and left from 0, as in

co-ordinate geometry, and let OA = a, OA' =—a, as in Fig. 87.

OA' can be obtained from OA either by rotating OA through

180", or by rotating

through 90" to OB and

then again through 90"

to OA'.

The complete operation

is equivalent to multi-

plying by — 1. The

^ To +a A operation of rotating

Pig. 87. through a right angle

is such that if repeated

the result is multiplication by —1. Rotating through a right

angle is therefore similar to performing the operation 0.*

* This conception is used by modern mathematicians to obtain two
algebraic dimensions without using spatial relations.
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Following out this clue, take two axes OX, OY at right

angle.-J, with scales from -co to +00.

Represent any real quantity « by a length OA on OX, and

any imaginary quantity 5, by a length OB (= i on the scale)

on OY.

A new quantity can now be defined in relation to any two

quantities, one real and one imaginary, as follows :

Mark off 0M= a; along OX, and ON = y along OY, where

m and y^ are any real and imaginary quantities. Complete the

rectangle OMPN^ Join OF. Let Z XOT = 6, and OP = r.

Then 6= tan ^- and r— -/»^+^^. Regard r as always

positive, and 6 as any (real) angle, positive or negative.

Definition. A complex quantity is one which can be com-

pletely represented by the line (or vector*) OP, thus constructed

with reference to the real quantity x and the imaginary quantity

^i ; this quantity is written (x, y) or (r, 6).

* Vector is used to denote a line drawn in an assigned direction and of

assigned length.

Q 2
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r is called the modulus (or measure) and 6 the amplitude*

X the real part, y, the imaginary part.

Rules defining the use of + , — , X , -^ with Complex

Quantities.

These rules are so chosen that when the ^'s are zero they are

identical with the rules of real quantities, and when the a?'s are

zero with those of imaginary quantities.

Let OP (t-j, 6-^ and OQ (r^, 6^ be the same quantities as

(a\, ^i), (a^2J ^2) respectively.

Rule. (x,
, yj) + (Xg, y^) = (x', y'),

where x'= x^+Xg and y' = yj + ya (xi)

Complete the parallelogram OPBQ. Then OB is {x',y') or

(r', Q').

Here r' = ^/ { r-^ + r/ + 2 r^ r^ cos {6^ -6-^},

and 6' = t^n-U'l^:^h±Il^l^).
^7\ cos Sj + '2 COS ^2'

Hence / is always less than r-^ + r^, unless 0^ = flj-

If any of the quantities cc-^, cc^, y-^^y^ are negative, subtraction

is involved, but no new rule is needed.

If ^1 = = ^2 we get the ordinary rule for real quantities. If

a^i = = «2 we get rule (i) for imaginary quantities.

Rule. OP OQ OS

where r' — r-^xv^ and 9' = Bj + 63 (xii)

S may be obtained in Figure 88 as follows

:

Let OD = 1 on OX. Join DP.

Construct a triangle OQS, similar to OBP. Then

ASOX= IS OQ + lQOD = 0^ + 6^=6',

and OS:OQ::OP: OD, i.e. OSx 1 = 9\r^, and .-. OS = /.

* Also called the argument. In astronomy amplitude is used as the angular

distance of the position of a rising (or setting) star from the point on the

horizon due E. (or W.) of the observer. Thus X.Z' may be regarded as the

E. and W. line.
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If O^Sbe («',/),

«' = / COS 9' = fj r^ (cos ^1 cos ^2~ si'i ^i ^i^ ^2) = ^\ ^2 ~y\yi^

and ^' = r' sin fl' = a;^ ^j + «2 ^i •

If y^ = ij^= 0, then ^' = and r' — co' = x-^x^ = i\ r^, as

with real numbers.

If x-y = x^ = 0, then / = and x' = —y-iy^^ which corre-

sponds with (viii) for multiplication of imaginary numbers.

If ^j = = «2i then «' = and y' = x-^y,^ =. y^x-^, as in (ii)

and (vii).

If i\ — \, 01 = 0, and 02 = \-n, then Q' — ^t:, x' — 0,

y = / = 1\ = «i , and we have the process called above.

If Q^ = 0, then Q' — 6, and we have simply a prolongation

of OP.

Division is to annul the effect of multiplication.

{('•1. «l)-^('-2. ^2)}x(»-2,e2)=(ri, ^l).

But by (xii), (J , e^-e^) X (i-^, 0^) = (r^, 6^).
'2

Bule. Hence the quotient of (rj, flj) divided by {r^, 6^) is

a complex quantity, whose modulus is — and amplitude
r,

(61-62) (xi")

It follows that

(-, — 6) = 1 -r- {r, 0), which may be written -—--. (xiv)

Indices.

Rule. When m is a real positive integer,

(r, 0)" = (r, e)x{r,e)x... {n factors)
;

but {>;dy= (»^29) by (xii),

and it is easily seen that (r, fl)" = (r", n 9) (xv)

It follows that if m is also a real positive integer,

(r, fl)n X (r, 0)" — ()", 716) x (r™, mO) = (r"+'", m + n 0). (xvi)

We shall obtain the meaning of fractional and negative
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indices by making the rule that the resulting quantities are to

satisfy (xvi). (Compare pp. 2,3.)

Let
J)
and q be real positive integers.

Then {f, ^ef= \{^-^^,p6\ by (xv)

= {rP,pe), = OP, say, = {r, e)V by (xv).

Here ()*, — d) is called a q^^ root of the quantity OP.

We can obtain q different rcots to satisfy this equation as

follows

:

The quantity {rP, pd + 2^Tr) is represented by one and the same

vector (say OP), where A is zero or any integer, and this

formula includes all possible values of 6 for this vector.

But by the equation just given,

(ri Pl±lhf= {rP,pd+2k^) = {rP,p0).

The equation is therefore satisfied by a complex quantity, with

-
modulus >•« (always real and positive and therefore not am-

biguous) and with amplitude any of the angles — 0,
,

Pl±ll .... The (^ + 1)*!' term is (l6 + 2Tr), which has the
q ^q '

same vector as — 6, and the others are repeated in the same

way. It is easy to see that negative values of k give no new

vectors.

We have now obtained q distinct roots of OP, and may write

(r, e)l = (ri, ? e + ?^) , or (r, e)-^ = (r», nO + ^)

,

where m is any commensurable jMsitive quantity, q the denomi-

nator of n if « is fractional, and k is zero or any integer, (xvii)

If n is zero, the convention of equation (xvi) gives,

{r, ey X {r, ey = {?i+«,
(i + Q)e} = {r, e)\

and {r, 6)° is to be iaken as the real quantity 1 ; here

CO = \ z= r, y = Q = 6.

If M is a negative commensurable quantity, let n = —n,'.



INDICES 231

Then, by the convention,

{r, e)» X (r, e)^= {r, e)«+"'= {r, 0)" = 1.

.-. (r,eT= ^
, = ; by (xvii)

= (r-', - {n'e +— )) by (xiv)

since +k and —k have the same meaning, viz. any integer,

positive or negative, or zero.

Hence the statement (xvii) may be extended to include all

commensurable values of n, positive or negative, including n = 0.

This result is tnown as De Moivre's Theorem.

No meaning has yet been given to an incommensurable,

imaginary, or complex index for complex quantities.

li OS — Q we have rules for powers of imaginary quantities,

contained in the statement ^,'' = Ct/'"', ^mr -\ ) > since here

r — y and 6 = ^tt.
^

Example. Compare this with i" when w is a positive integer.

If the whole of the previous analysis is written with r = 1,

all the points are restricted to a circle of unit radius and there

can be no variation of the modulus.

li 6 = 0, and « == - , where ^ is a positive integer, we have

that the it/* roots of a real quantity x are fx'', ) • This is

best illustrated by the following paragraph.

The n n"" Boots of Unity.

1 1 n L

1" — (1, 0)" = Tl, -) )• Hence the complex quantities,

whose amplitudes are 0, — , — , ... 2 it and whose moduli
n n n

are 1, are n different w* roots of unity.
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If n is odd, there is only one real root (1, 0), and the ampli-

tudes of the other roots are

the-
1 . w— pairs 1! + -

,

77 +
Stt n — 2

77 H 77.

Fig. 89.

E. g. if w = 5, the roots

are OA^, OA^, 01^, 01^,

OA^, where the ^'s are the

angular points of a regular

pentagon, as in Figure 89.

If 91 is even, the roots are

0, 77, that is, the real quanti-

ties + 1 and — 1, and the

remaining amplitudes are

77 +
277

77 +
477 ^«— K

77 + ( I 77.

The fourth roots of unity are O^j, OJB, OA', OB' in the figure,

that is, the real quantities + 1, and the imaginary quantities + 1.

Examples. Find the 7th roots of 128.

Find the 6th roots of 2037, using logarithms.

We found that the operation or X t is analogous both to an

imaginary process of taking the square root of —1 (p. 225) and

to rotation through a right angle. We can now see that the

result of taking any (the %'*) integral root of —1 is a complex

77 l*""

quantity f— 1, -j, obtained by rotating through - of two

right angles.

The introduction of the ideas of imaginary and complex

quantities has enabled us to attach a meaning to roots of any

order of any real quantity.

We have now attached meanings to +, — , X, -:- and a real

index when applied to complex and imaginary quantities so as

to satisfy the conditions that they are definite and consistent

with each other, and so tliat the laws for complex quantities

become those of real quantities when the ys are zero and those
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of imaginaiy quantities when the .v's are zero. We proceed to

show that the laws satisfy a further remarkable and important

condition.

Put alongside each other the rules of addition and of multipli-

cation of real and of complex quantities.

Real : (a^ + b^) + [a^ + b^ = {a^ + a^ + {b^ + b^ .

Complex : («j , ^J + {x^, y^ = (x^ -Vm^,y^ +y^.

Real : {a^ + Jj) x {a^ + b^ = (a^ a^ + b.^ b^ + (a^ b^ + a^ b-^ ).

Complex: («i , ^i) X (^j , ^g) = (i»i iSj- y^ ^g, ^lya + ^a^i)-

If now we write the complex quantities
(«?i ,^i), &e., as «j + ly-^

,

&c., where + simply means that iZJj and ly-^ are united in a complex

quantity, then we find that the rules of addition and multiplica-

tion can be obtained as if this 4- signified addition and the rules

of real quantities were applied to ly.

For then we should have

(«! -I- ly^) -I- (^2 + t^a) = «i -1- «2 + '^1 + '^2 = i^l + «'2 > ^1 +^i) .

and (a-j + Ly^)x {x^ + ly^ = a\x^ + i^y^y^ + x^y^ + x^ y^

= {x-^x^-y^y^, x^y^ + x^y-^), since t2 = _i.

The notation x + iy is generally used ; and z = x + ly is taken

to mean that z is the complex quantity whose real and imaginary

parts are x and y,

.

Both for real and for imaginary quantities subtraction and

division are the processes which annul the effect of addition and

multiplication respectively ; and the meaning of indices has

been deduced from the same convention for real quantities (p. 2)

and complex (p. 229, equation xvi).

Example. Find from (xiii) the result of (iCj, y-^ ^ (052, 2/2)1 ^''d

verify that it satisfies tlie above method.

It follows that with this conventional use of + in complex

quantities, we may apply all the rules and processes of algebra

up to the solution of equations, ratio, progressions, and indices,

whatever the letters stand for, but not as yet to logarithms,

limits, or series, since these words have not been defined in

connexion with imaginary and complex quantities.

We may now remove the restriction that the letters used in

algebra mean real quantities, being prepared to interpret anj"^
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letter as meaning either a real, imaginary, or complex quantity-

according to the conditions of the problem. By this means we

obtain an enormous extension of Ihe power of mathematical

operations ; we can perform all processes, without reference to

there being a physical or concrete interpretation for them. If

the data of a problem are physical and our processrs correct, we

are bound to obtain a result in real quantities, if such a result

exists. If there is no real, but only a complex or imaginary

solution, we should learn that the hypothesis was physically

impossible, for example, the times at which a body projected

upwards with velocity v will be at a height Ji are given by the

equation h = vt—^gf^. This gives (t——) = ^ ^^

c^ < 2 hy, we obtain a real value for t ; otherwise t is the com-

plex quantity - + ty, where ^^ = —^^ , and the body does

not in fact reach the height h. Thus we can give a solution of

such a quadratic as stated at the beginning of this section. The

sum and product of the roots are — and — and are real,

whether the solution is real or not.

The sequel will show that many important results can be

readily obtained by the use of complex quantities, for which no

easy proof is available without them ; and the student may take

on trust the general statement that the great part of advanced

mathematical analysis, which has innumerable practical results

in mechanics and physics, would be impossible, or so cumbersome

as to be impracticable, if all letters were restricted to mean real

quantities.

The following examples are given to show further the relation

between the various ways of expressing a complex quantity, viz.

z = x+ iy = {x,y) =^ (?•, Q\ and the use of the z notation.

We have «»=(;«,» 5) ; hy.z =^ {h,(S)x{r,Q) ={rh,e)\

+ ^ + 02'- = {a, 0) + {br, e) + {cr^, 20),

where a, b, c are real, and these complex quantities can be added

and expressed as one ; or

a + b{x + iy) + c{x + lyf = a + dx + c («^—^^) + 1 (^y + 2cyx).
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Similarly, any rational integral function, f(z\ of z can be

expressed as one complex quantity.

Example. Work out a-vhz-^ cz^, and mark z and the result on

the diagram, when z = (^, ^tt), a = 3, 6 = — 2, and c = 4.

then fi{^) -H/aW — (~! ^i^^a) fr^i^ equation (xii),

and thus a fraction whose numerator and denominator are rational

integral functions of z can be expressed as one complex quantity.

If ./(«) is a single-valued function of z (that is, is uniquely

determinate when z is given) and is expressible by two different

processes as a + hi and c + ili for the same value of z, then

« = c and b = d. For if OP represents the function on the

diagram of complex quantities, a and c are both its projections

on OX, and b and d on OY.

E.g. (l+cosfl + tsin0)2

= 1 + 2 cos fl + cos2 e - sin2 5 + 2 i sin 5 (1 + cos 6),

by direct multiplication, and

= (2 cos2 i0 + 2 1 sin Afl cos \fff

= 4cob2ie(cos|e + isinA6)2 = 4 cos^l^ (cos 9+ tsin 9)

by De Moivre's theorem. Heuce

1 + 2 cos 6 + cos2 e - sin^ d = 4cos2 ^6 . cos 5,

and 2 sin e ( I + cos 0) = 4 cos^ ^9 sin 6,

as can of course be proved directly.

li f{z) = a + bi — for any value of z, then a = and

5 = 0, for if either a or 5 have any value, a + bi is represented

by some line OP, not by 0.

E.g. if z = (2, I71)

1 +s^ 1 + (4, -tt)
;:^ ^r-a = ; „ ,„ ,

—,

' ^„ ,,—s—ri in the (r, 6) notation
l + 2z+3z^ 1 + 2 (2, |tt) + 3 (4, f tt)

^' '

(1 + 4 cos |t, 4 sin §77)

(1+4 008^77+ 12 cos fir, 4 sin §7r+ 12 sin fTr)

'

in the (cc, y) notation,

(-1,2^3)

(-3, 8/3)'
in the {x, y) notation.
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(713, tan-i-2V3) ,. , a\ w—
.

7^5 m the (r, 6) notHtion,
(/20],tan-i-8/-/3)

{ ^ I ) tan-^ Y in the (r, 6\ notation,

^V 201 5\ J' ^ ' '
'

^ l+{l + i\/~3f _ -1 + 12/3
l + 2«+322- l + 2(l + ty3) + 3(l + t/3)2

~
-S + tS-Zs

^ (l-t2-/3)(3 + t8A/3) _ 51 + t2-/3

1+22

(3-i8'/3)(3 + t8-/3)

20T=v

201

(cos 5 + I sin 0), where tan 6
2v/3

61

Fortunately, it is not often necessary to go through either of these

processes.

Conjugate Complex Quantities.

(«, y) or (r, 6) and {x, —y) or (r, —6) are said to be conjugate.

Their sum, 2x, and product, os^+y^, are both real. [This

should be worked in both notations and shown on a diagram.]

1( /(z) is any function for which we can perform the opera-

tions necessary to express it as one complex quantity, and all the

letters and numbers it involves other than z are real, and

if f(z) =f(x + iy) =x'+ty',

then f (x — ty) = x'— ty'.

For, let P be (x, y) and Q be {x', /). Draw PF, QQ' parallel

to OY so that PP' and QQ'

are bisected by OX.

Then P' is {x, -y).

The process of finding Q'

from V is exactly the same as

that of finding Q from P with

the diagramturned upside down.

Hence Q' is (»', —y').

Hence, P and P' being con-

jugate, Q and Q' are also con-

jugate.
Fig. 90.

Example, a + &« + c^

= a + 6a! + c (a;2 - 2/2) + 1(63/ + 2ca5), if a = a; + ty

= a + 6a; + c (352 - i/2) - t (6y + 2c£(;), if z = x-iy.
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Digression on the Roots of an Equation.

If /(z), a rational integral function of z, is (0, 0) when a = a + i/3,

then a + i;8 is said to be a root of the equation /(«) = 0.

As on p. 86, divide /(s) by

{«-(a + t/3)} {«-(a-j/3)} = »2-2a3 + a2 + ^2_

f{z) = Q .{z^ -2(xz + oi.'^ + ^'^) + Rz + R',

where § is a function two degrees lower than f{z), and li and li

depend only on the coefficients of z in /(s), and are real.

Write tx + 1/3 for z in this identity.

= /(a + 1/3) = Q X + R (a + 1/3) + R'.

.-. R(X + R'+iRl3 = 0, which is only possible (p. 235) if 7i = and

Ra + R' = 0.

.-. R= = R'.

Now write a— 1/3 for z in the identity.

.
. / (a - t/3) = Q . {0} + = 0, and a - 1^ is also a root.

Hence if (a, ;8) is a root of /(«) = 0, its conjugate (a, — 0) is also

a root.

[This may also be seen from the preceding paragraph, for if Q is at

0, so is C'.]

As on p. 87, it can now be shown that there cannot be more

than n roots, real or imaginary, to an equation of the nM^ degree.

If n is even, the roots may all be complex. If n is odd, = 2m + 1,

there cannot be more than »?i pairs of conjugate complex roots, and if

TO pairs can be found, there remains a real factor and a real root.

Coefficients of two finite

rational functions can be equated

as on p. 88, and as on p. 89

the sum of the roots, the sum of

the products two together, &c.,

are related to the coefficients.

E.g. a33-2a;-4

= {x-2)(x+l^+l).

The roots of a!^ - 2a;- 4 =
are 2 (A), - 1 + t {B), and - 1 - 1 (C).

Their sum = (coefficient of x^). The sum of OB, OC, con-

sidered as vectors, is 2 ON, which = - OA

.

D
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Product two together

= 2x(-l + i) + 2x(-]-i) + (-l+i)(-l-i) = -2 (coeff. of a;).DBF
(The sum of OD, OE, OF is 2 OM and OF = OM = - 2.)

Product of the three = 4 = the absolute term x - 1.

Theorem. Every equation, / (z) = 0, where / is a rational integral

function of the ri^^ degree, has n roots, different or coincident.

[The following proof is only outlined. It is based on Buruside and

Panton's Theory of Fqiuitions, 5th Ed., p. 260.]

Let/(«) = a„2" + a„_i«»-i+...+aiS + ap.

Let ^ be a small complex quantity.

Then f{z + h)-f{z)

+ a,\ +h^ X'IS finite= A{a„?^^«-l + a„_l(»l-l)^«-2-

complex quantity.

Let /(a) be (r, 6). Let the coefficient of h be (/, 6').

Take A to be (p, tt + - 0').

Then f{z + h)= f{z) + {p,'n + d~ 6') . (/, 6') + f,^
x finite complex

quantity.

= (r, 6) + {r'p, T! + &)* + a quantity which may be

made small.

Let P represent z, P' z + h, Q f{z), and Q'f{z + h).

Now the sum of (r, ff) and (r'p, -n + Q)

is (r - r'p, 0). (Equation xi.)

Then if Q is not at 0, P' a neighbour-

ing position to P can be found, so that

the resulting Q' is obtained by moving

from Q towards through a distance

r'p, if quantities small in comparison

to QQ" are neglected ; and p can be

taken so that the inclusi"n of the smaller

quantities still leaves OQ' < OQ.

Hence P can be theoretically moved by small finite steps to bring

Q nearer 0, till Q is within any small assignable distance of 0.

* r' cannot be zero except for« — 1 yalues of s (p. 237), and since Q can be

taken anywhere these positions can always be avoided.

Fig. 92.
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Hence there is always a position of P wliicli satisfies the equation

m = 0.

If the root is real, a, then (a -a) is a factor and the quotient is of

the n — l"i degree.

If the root is complex, a + iyS, then a - 1/3 is also a root, and the

equation can be reduced 2 degrees.

A similar process can, theoretically, be applied till we come to the

2nd or 1st degree.

Thus the equation has n roots, real or complex.

It may happen that the root is repeated any number of times (up

to TO— 1) in the process.

CoBOLLARiES. Every equation of odd degree has one real root.

Every rational integral function of the 2™*'' degree has m real

quadratic factors. [These factors can be found when m = 2, but not

in general for higher degrees.]

Two Important Series.

The binomial series for a positive integral index (p. 22) is

simply the result of multiplication, and is unaltered for complex

quantities.

Hence if n is integral,

cosnoi + isinna. — (cos a + 1 sin a)"

= cos"a— ^C^cos^'^a sin^a + ^C^cos^'^a sin*a—f-...

+ t (n cos"' ^ a sin Oi— „C^ cos ""^ a sin^ a.-\—

)

= A + iB, say.

.•. (cos?ia, sin«a) and (A, B) are represented by the same

vector^ and _. coana. = A, smncx = B.

[The last process, justified on p. 235, is called 'equating real

and imaginary quantities on the sides of an equation '.]

Example, cos 4a = cos* a - 6 cos^ a sin^ a + sin* a

= 8 cos* a - 8 cos^ a + 1.

T7. -J j-i i -^ Mtan a— -Cotan^on-
Jlividently tan n(x = — — ?^—

2

.

A 1 -„C2tan^a + „(7jtan*a-
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In the equation sin«a = ^, write a. = — and rearrange,

writing out the values of ^C^, „C^, &o. Then sin 6 =
.6 r e\^

, SIR— ' «m —

(cos-) -fl— (cos-)

sm-
H

n

3!

+ (eos-l

a r

' sm - '

n

6

Increase n indefinitely, 9 remaining finite

Now J^j

fsm-0V

= 1, if r is finite (p. 103 and p. 105),

and (l-h(l-l)...(i-.'J=^)<,,>l-'±z}l

(pp. 13 and 14).

.•. the limit of this product when r is finite is 1.

Also 1 > (cos -
j > ^1 _ - _^ , when n is finite (p. 69, iii),

-L'(.-^)"=L'l("-£n-L'(.-)=
T V ^^" 1

= fiO = 1.

These limits being combined, the terms in the expansion of

sin 6, so far as fl^m+i^ where m is finite, may be written

'-31 + 5!
,-(-!)«

The remaining terms may be wiitten

/)2m+l

g2m-l

(2m— 1)!

2OT + 3 2?H + 4v.

!-V n ' ^ 11 '

(2« + 3) {2?n + 5)

. e
sm -

n

^2
+
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This is convergent if 2m + 3 > 6 sec-, and m can always be

taken to satisfy this condition. Also — tt-, may be made

as small as we please (p. 103).

Hence sine =L(«-^ + ^--(-l)"(ii3I)l)-

By a similar argument it may be shown that

If « = COS 5 + I sin 9, - = cos 6 - 1 sin 6,
z

2oos0 = a H— > 2 sin 9 = — I ( » — -
J >

and z^ = costQ + LiintO, -^ = aostd — isiatd, where ( is
*

any integer.

2cos<fl = *<+ -() 2sin<e = -t(«' - ;^).

2»cos»e = (a + -)"

.-. 2"-^cob"5 = cos>i5 + tccos(?i-2)9 + „(7jCob(71-4)0+ ....

If ji is even, the last teim is „C„. If n is odd, the last term is

nCn-i cos 9.

2

E.g. 4 cos' 5 = cos 35 + 3 cos d,

8cos*fl = cos 45 + 4 cos 25 +6.

Example. Obtain similar expressions for sin" 5, in terms of

cosines of multiples of 6 when n is even, and in terms of sines of

multiples of 6 when n is odd. Verify the results when n = 2, 3, 4, 5.

Series involving Complex Quantities.

We do not propose to. deal with the convergency of series

involving complex quantities, except in the simplest cases.

As with real quantities, a series is convergent if it has a

unique finite limit when the number of its terms is increased
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indeiinitely. I is said to be the limit oi/(z) for z = z^, when

the modulus o?f{z)~^l < e, for all values of z whose modulus

differs from that of Zj^ by less than A, where k can be determined

in terms of z^ and e, and e is as small a quantity as we can

assign. [Compare the definition on p. 101].

To explain this definition, let P, Pj, and Q represent z, z-^, and

/(z) respectively.

Describe a circle, radius A, about Pj. The modulus of every

point within this circle is be-

tween p + A, where p is the

(j^Q ^—

\

modulus of «j.

Let Q' represent I. Describe

a circle, centre Q', radius e.

The definition states that if

P is within the circle round P^,

Q is within that round Q', and

if by a suitable choice of A

we can make e as small as we
^^"^ ^^- please, then Q' is the limiting'

position of Q.

We may now add to the definition of a limit, that if /(^)

depends on any quantity, n, and is such that for an assigned

value of z,/(z) is always within a circle with known centre and

assigned radius e, when n is greater than some assigned value,

then /(z) has a unique limit when n is indefinitely increased,

[Compare the latter part of the definition on p. 101, and the

condition for convergency when T P„ = on p. 107.]

'(l-> CO

Theorem. T/ie series ai^-\-a-yZ + a^z'^+ ... is convergent, if

af^ + a^r + a^r^+ ... is convergent, where r is the modulus of z.

Let S^ = a^-\-a^z-^ ,,.-\- «„_^
«"-i, and write jB„ for

«'.„^« + «„+ie»+i + ....

Let Q be the amplitude of z.

z^ = r*(cosi!9 + 4sini!5).

As on pp. 234-5, 5„ can be expressed in the form x' +1/.

li„ = r" {(a^cos nO + a^^^r cos n+1 d+ ...)

+ i(a„sin«fl + fl'„+irsin« + l 6+ ...)].
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Write this r«{A + Bi,).

Then since no cosine or sine can be > 1 or < 1

,

Ml >«„ + ?«„+!+... and |5|> ff„ + ra„+i+....

Since by hypothesis, a^ + a.^r+ ... is convergent, r'"'A and r^B

can each be made less than any assigned quantity by increasing

n sufficiently.

Hence the modulus o{ R„, viz. f". VA^ + £^ can be made <e.

Let )i have such a value.

If Q' represents S„, then S„+B„ is always represented by

a point within the circle, centre Q', radius e.

Hence the series is convergent.

As with real quantities, we can evaluate a convergent series

to any required degree of accuracy ; that is, we can find a space

on the diagram of complex quantities of as small area as we

please, within which the point representing the limits of the

series lies.

1 + ? +— + ... +— + ... is convergent for all values of z,

since I +r+ — + .,.-{ — + ... is convergent (p. 109), where r is

the modulus of z and real. Write E [z), as before, for the limit

of this series.

Example. The binomial series, general term ^^-jiz* is convergent

if - 1 < r < 1.

Multiplication of Convergent Series. [Compare pp. 113-14.]

Let U„ = a^ + a^z + a^s^+ ...+ a„ z'\

and F^ = bQ + 6j^z + b2«''+--- + l'n^"'>

where all the coefiieients are real positive quantities.

Let }F„ — «„ bo + («„ 6^ + «i b(,)c+ ...

Let £/'„, F'„, W'^ stand for the same series when r is written

for z, corresponding to S^, <S'„, S„ on p. 113.

Let U' and T' be convergent. Then W is convergent and

K 2
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//''= UT' as on p. 114 ; and U, J', and TF are convergent, from

pp. 242-3.

Now W^„— U„ r„ contains terms in ^"+i, «"+^ ... z^", all with

positive coefficients, which also form part of the terms, all positive,

of r,„-r„._
But since ^'is a convergent series the modulus of W^^^—W^

may be made as small as we please by increasing n. A fortiori

the modulus of W^^— [-''„ F„ may be made as small as we please.

Hence U^ F^ may be made to differ as little as we please from

W^^ or from F'^. Hence in the limit Ux V= W.

Now work through the proof on p. 120 that

E{iic^)xE{x^ = E{x^ + oc^),

writing «-j, z^ for x-^, x^. Every step will be found to apply, and

the binomial theorem is only used with a positive integral

index and will apply to complex quantities (compare p. 239).

Hence E (zj) x E (Zj) = E (zj + Zj) for all values of z.

We have here a close analogy with the first rule of indices

(p. 2). In fact, it z = X, the equation last written is

Now define e^ as T ^ 1 +z + ^z^+ ... + — z" = E{z),

and we have c*» X e^' = e^i
•"

''.

As on pp. 2, 3, e" =1, e^i x t^i-"'- = e*2.

Also e ? is a j'^ root of eP'^.

(e*)™ and e"*^ are equal if m is integral, and have one value

in common when z is fractional, whether m is positive or

negative.

We may therefore use all the laws of indices in connexion

with e',

[Note. No meaning has yet been given to a'.'\



euler's expressions for sine and cosine 245

Writing z = x +^t, take the case where x = 0, y = 9,

6^ 6*

2 ! " Sl + Tl

and e-»' - E{-ei)

l + ^'-7r7-';r7 + r,-
+ + + •••'

6^ 93 e*

,,,. e^i + e-fl^ E(9i) + EC-et)
Adding, ^ =

-^

= 1- — + -— ,,. = cos9 (p. 241).
2 ! 4

!

^

Subtracting and dividing by t (the quantity (^0, q))'

eei-e-e' _ e(90-e(-90
2t "~ 2t

93 9^:^9-— + — -...= sin 9 (p. 241j.
3! 5!

-^

These real series are convergent for all values of 6.

The expressions aud —-—- are known as Euler s

expressions for the cosine and sine.

Evidently efli == E (9i,) = cos 9 + t sin 9,

e-9i. = E (— 9t) = 00s 9— 1, sin 9.

^ (iri) =«'''= — 1 + 1 X =- 1>

^(10 = ^^' = '. E{-i:) = f^' = -,

E{{2kT: + e) 1} =cos(2/47r + 9) + tsin(2/J7r + e)

= cos9 + tsin9 — E{ei),

E (i) = cos 1 + 1 sin 1 (where 1 means 1 radian),

E{z) = E{x + 7/i) = E{x)xE [1/1) = e^(cosy+tsin5'),

and E {00 +/+2l71) = E{x)xE {f+2k^L)

= E{x)y.E{yi) = E{z).

E (z) is therefore a periodic function, returning to the same

value whenever 2 ir is added to the imaginary part of -

.
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[At this stage the student is advised to pause and reflect on the

meaning of E, tt, and i, and to realize that E (jii) = - 1 is a necessary

result of the conventions under which the quantities are defined, and

of the rules of operation which they have been defined as obeying,

and to see that no inconsistency has been involved.]

Examples. Verify by Euler's expressions and the rules of indices

that sin^e + co&^e = 1, sin2e = 2sinecos0, cos2fl = 1 -2sm^0,

. „ „ .
a + /3 a-/3

sin a + sin fi = 2 sin—-— . cos —— •

Z Li

Trigonometrical Ratios of Complex Angles.

The idea of an angle and its ratios is by the preceding para-

grapTis separated from the first trigonometrical ideas.

We might in fact have defined sin x as the limit of a;— r-; + • • •

and cosa; ,, „ 1 — — + ...

Now define sinr, and cos 2, to which no meaning has yet

been attached, thus

:

sin;

cos« L r-2!+-i-
—

¥.
—

'

sm r 1 1

tan ~ = = —-— ; sec z — ; cosec

;

cos c cot z cos z sin z

— 4 +4

_ -Ei2.:c)+2E(0)-Ei-2,,)+ + +
4

= 1, since E (0) = 1.

Similarly, or by using the index form, it can be shown that

sin (^1 + ^'a)
= sin z-^ cos z^ + cos ^j sin z^

,

and that all the formulae on pp. 57-8 are true for complex angles.

cos (2fCTT+Z) = 5^ '—^

_E{2kT!i)xE{zi) + E(-2k-ni)xE{-zC)

2

E(zl) + E(-zi)

2

Similarly for the other ratios.

= cos r.
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The trigonometrical ratios of angles, real or complex, are

periodic, returning to the same value whenever the real part is

increased by 2Tr.

cos ; is a function of z and can be separated into its real and

imaginary parts and represented on the diagram of complex

quantities thus

:

E{zi) + E{-zi) _ E{^+iti) + E{-^+iii)
cosz -

^
_

2

_ E{xi—y)+E {-oil + ij) _ e-y E (xi) + eV E{—xi)~
2

~
2

_ e~y (cos X + 1 sin x)+ey (cos«— t sin x)_ _

ey+e-y . ey-e-y= cos X + t sin X •

2 2

E.g. If. = (|, l)(P), 24Y

then cos r ^< "'"'
i

_ 1 (e^ + e-^ e^ — e-'^l

~71 i~Y~ +'~~2~) O

= (1-09, -83) (Q).

Q

*"! 2 3

Example. Express the other pj^^ 9^

ratios similarly.

If cos^ = 11 (Q), i.e. ,: = cos~' «, where m is known, P may
have any of the positions . . . P", P', P, Pj , P^

Example. Solve completely on the graph the equation

sin 2 = 2 + 3 1.

Definition.

Hyperbolic Functions.

E{z) + B{-z) e' + e-" j t

+ R + T4 + -)2 2

is called the hyperbolic cosine of z and written cosh z.

e'— e"" T t /- z^—
\ ^

(« + iT +•••) is called the hyperbolic sine of
2 J-^ V • |3

z and written sinh r
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tanh z is defined as —r—- 1 &c.
cosh z

Then cosh^ z- sinh^ z = \{E (z)^E{-i)Y
-\\Ji{z)-B{-z)Y=\.

If z is real these expressions are all real.

cosh^ « — sinh^ a; = 1.

[If, in co-ordinate geometry, Z = « cosh ^, and Y =b sinh 6,

-J — Tj" = li^nd the locus ofX, 7is a hyperbola; hence the name.]

Examples. Show that the hyperbolic functions have an imaginaiy

period.

Show that cosh z = cos y cosh a; + t sin j/ siuh x.

Given that cosh a = 2 + 3t, show that z = 1.98 + t (2A7r+ l-OO...).

Show that cosh~^ u = log (m+ -/tj^ — 1) when u is real.

These functions, ordinary or hyperbolic, having real or

imaginaiy periods, are of

1
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This curve is the catenary, the form taken by a uniform chain

suspended from two points.

Examples. Draw the graph of siuh x, and of tanh x, and from

them find siuh"^ 2, tanh"' 4.

Show that sinh z = — i sin »i, cosh z = cos «i,

sin 21 = 1 sinh z, tanh 2 = - i tan si,

tan 21 = I tanh z.

The following notes show how the theory of complex quantities

is further developed. The student is referred to Hobson's Plane

Trigonometry, pp. 282 seq.

M is defined as the logarithm of z, if v, has any value that

satisfies z z= E («). Then u is written as Logg z.

a" is defined as E{y) where v ^^ z Logg a (compare p. 123).

If a is real a* has a meaning at once. If a is complex, Log^ a

is to be interpreted as just above.

a^ is shown, with certain restrictions, to conform to the laws

of indices.

[If z is real but incommensurable, we can give a similar

meaning thus

:

4V3 = 1 + ^3 . log, 4 + 1 (^^ . logg 4)2 + ... .j

71 \7b— 1 )

The limit of 1 + nz H
'

c^ + , . , is shown to be a value
X • ^

of (1 + zf: (Binomial Theorem.)

logg (1 + 2:) is shown to be the limit of z—^z'^ + ^z"—...,

when the modulus of z is not greater than 1.

Logarithms are found to be functions with an imaginary

period.

As an example of the use to which these definitions and
theorems can be put, the following incomplete proof is out-

lined :

e^' = cos 9 + 1 sin 6,

01 — logg (cos 6 + I, sin 6) = log^ cos 6 x log, (1 + i tan 9).

.•.01 = imaginary part of t tan 9— f (i tan 6)^ + |(t tan fl) ^—
. .

.

If tan 9 = a; we have one value of

tan~^« — = x— ^a;^ + ^x^—....

It can be shown that if < » :)> J ir, the series gives the

acute angfle.
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In particnlar, if 6 = ^tt, tan 5 = 1 = so,

and Tr = 4(1— 1 + ^— |-...). Gregory's series.

There is no way of obtaining this, which in a slightly developed

form gives the easiest way of evaluating tt, without all the

definitions and proofs indicated, except by a troublesome method

of limits or by integrating an infinite series, which requires

a considerable development of theory.

With this practical outcome of the very abstract theory of

complex quantities we may conclude this section.



SECTION IX

CO-ORDINATE GEOMETRY IN THREE DIMENSIONS

The methods of analytical geometry can readily be extended

to three dimensions.

The Point.

Let XOT, YOZ, ZOX be three planes mutually at right angles

(planes of reference), intersecting in the axes OX, 07, OZ. For

convenience of drawing consider OZ as vertical.

The position of P, any point in space, is determined, when its

perpendicular distances PK{x), T?L{y), and PM{^) from the

planes YZ, ZX, and XZ respectively are known.

z



253 SECTION IX. SOLID CO-ORDINATE GEOMETRY

But ;'2 = Om + NM^ + J/P^ = a2 +f + z^^r^ (P + m^ + u'').

.-. P + m^ + n^ = 1 (i)

/, }ii, n are called the direction cosines of the direction OP.

The point may also be determined in spherical polar co-ordinates

thus ; Let a plane revolve round OZ from the initial position XOZ
through an angle ^ to the position MOZ, and let a radius revolve in

the plane MOZ from OM through an angle 6 to the position OP,

and take a distance r on OP. Then r, <p, 6 give the point. Here

X = rcoa$cos(j), y = r cos sin (^, z = r sin Q.

4> and 9 correspond to longitude and latitude.

Let P, Q be the points («i^i^'i), (^2.^2^2)' ^^^ ^®* ^Q — '^

Then the projection of PQ on any line equals the difference of

the projections of OP, OQ. Hence the projections of PQ on

the axes are ^2~^i' 2^2~ ^n ^i~^\j
and •• <i2-(x2-xi)2-t-(y2-yi)^ + (z2-zi)^ . • (ii)

Compare p. 131 (A).

The co-ordinates of a point dividing PQ in the ratio m : n are

of the same form as (B), p. 132.

The Plane.

A plane is determined, if the perpendicular ou it from is

known, in magnitude {p) and direction [Imn).

Let B be the foot of this jserpendicular and P (so y z) any

point on the plane.

Then (using the letters of Figure 96) the projection of OP on

OB equals the sum of the projections of OJY, NM, MP on OB.

But the projection of OP is p, since OB is perpendicular to

BP, and I, m, n are the cosines of the angles between ON, NM,
MP, and OB.

.•. the equation, lx-)-my-Fnz = p, (iii)

is satisfied by every point on the plane, and is the equation of

the plane.

The general equation of the first degree in {x y z), viz.

ax-\-hy-'rcz-\-(l = 0, can be put into the form of (iii) by taking

I m _n __ p _ Vi'^ + m^ + n^ +1
a~"b~ c ~ d ~

^a'' + !)' + c^
~

+ /a-' + A^ + c^
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We make the convention that the positive voot of the surd is

to be taken..

This general equation therefore represents a plane ; the direc-

tion cosines of the perpendicular to it are in the ratios a:h:c,

and the perpendicular from the origin to it is

-d^ v^{o2 + i' + c=).

If Q is any point («i ^j e-^ whose distance from the plane

measured in the direction (l m n) is p^, then lx^ + my^-^ tiz^

= projection of OQ on OD = p—Pi-
ax, + by, + cz, + d

.-. p, = p-(lxi + myi + nz,):= ' /' , '., (v)
va^ + b^ + c-

Compare p. 138 (H), and p. 140. In formula (v) the origin is

taken as being on the negative side of the plane if d is positive,

and vice versa.

Evidently x. = k represents a plane parallel to ZOY, &c.

The Straight Line, and Angles.

From P (Wj yi z-^ let a line be drawn in the direction

[I m n), let Q (x y z) be any point on the line, and let

PQ\r.
Thei^ x — x^ = rl, &c., and the equations

-x,_y-y,_z-z,
_

_ _ ^^.^
1 m n

determjine the locas of Q, and are therefore the equations of

a straight line. Compare p. 136 (E) and p. 185.

The equations of the litie joining two points {x-^y-^z-^ and

(x^y^z^ may be written as in [Y), p. 137,

^z£L=.Z:zZi==^^> (vii)
2^2-^1 ya-yi 22-^1

The a7igle between two intersecting lines whose directions are

{I m n) and (/' m' n') is thus obtained

:

Let OP, OP' be lines through the origin parallel to the given

lines, each of unit length, so that (Imn), {I' m' n') are the

co-ordinates of P, P'.
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Using equations (ii), p. 53, and (i) and (ii), p. 252, we have

cos POP' = (0P2+ OP'2_pp'2) ^ 2 OP. OP'

= 1
{ 1 + 1 _ (^'_ ^)2_ (»j'_ rrif-{n'- nf]

= \ {2- \-\-v2{ll'->rmm' -^-nn')] = U' +mm' + nn'. (viii)

The angle between two planes equals the angle between the

perpendiculars to them from the origin, and may be written

cos"^ {W + mm' + nn')

_ _i aa' + bb' + cc' ,. -

"'"'"
V{(aHta2 + cO(a'^ + b'2 + c'^)}' " "

^'""^

where aoi! + li/-\-cz + d = and a'x + h'y + c'z + fl'-= are the

planes.

The planes are therefore at right angles to each other, if

aa' + bb' + cc' = 0. (Compare p. 136 (D).) . . (x)

They are parallel if -^ = -^ = — . (Compare p. 136 (C).) (xi)

If (^1 OTj «i) is the direction of the line of intersection of two

planes, it is at right angles to the normal to each.

If {Im n) is the direction of one of the normals

IJ+ m-^m + n-^n = by (viii),

and .•. l-^a + mj^b + n^c = hy (iv). Similarly

Ij^a' + m-^b' + n.ic' = 0.

.•. Ijimi: nj = be'— b'c : ca'— c'a: ab'— b'a. . . (xii)

Surfaces.

An equation connecting «, y, and z represents in general

a surface.* For let f{xyz) = 0. Then, if we consider a par-

ticular value, &, of c, we obtain f (icy k) = as the intersection

of the locus with the plane z = h. Thus, as we vary k, we get

a succession of "two-dimensional loci.

This conception is readily visualized by considering these

(psy) loci as horizontal contour lines of a surface. The equation

a;2_4^2 = 82 is represented in Figure 97 as in a contour map,

* The exceptions are when there are no real values of x, y, and s satisfying

the equation, in which case the surface is imaginary, and when the surface

degenerates into lines or points in limiting cases. .

;
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showing the projections of horizontal sections on the plane

r = 0, between the limits x = +9, y = +5.

The equations of the contours 2 = ... 4, 3, 2, 1, 0, —1, —2,

— 3, —4 ... are

..., x^-if=32,...,x^-ii^^ = 0,...,co^-'if --32, ...,

and the contours are a family of hyperbolas with their con-

jugates, having the asymptotes :;; = +^J-
The surface is of the form of a mountain pass. The ascent

from a is at first precipitous, but becomes easier as the col

is approached. The vertical section by « = is the parabola

— j/^ — 2z ; the symmetrical route from J" to i'' is a parabola

turned downwards with vertex at 0. The vertical section by

y = is the parabola x^ = 8 r, turned upwards, vertex also at

; as we take breath at the col and look left and right, we see

that we are at the bottom of an infinite U-shaped figure, GOH.
Instantaneously we are on a level plane whose trace we can tell

by the straight level paths AB, CD. It will presently be shown

(pp. 267-8) that every vertical section parallel to AB or to CB
is a straight line, which is the steeper the further it is from 0.

EG, drawn in the figure, rises from the valley up the mountain

at a gradient about tan 59°. As we look forward or backward
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from Q we see infinite valleys whose horizontal sections are

hyperbolas. As we descend and look left and right we see that

we are always at the vertex of a parabola of unchanging size

{«? = %z).

Examples.
Trace the contours of

(1) The four surfaces ^ + |! + fi = i

;

9 16 25

(2) „ three „ |- + IL + |- = o, omitting + + ;

(3) a;2 + 4y2 = ga;

(4) a;2 = 4y+8,:;;

(5) The surface 4a!2+ 9^/2 + 20a!«/ + logiQ« = from s=-l to

'.= 1.

(1) gives the central conicoids, (2) the cones, (3) a paraboloid,

(4) a cylinder (see pp. 260-2), and (5) is called the correlation surface.

Transformation of Co-ordinates.

To transfer the origin to («i^i%), the directions of the axes

being unchanged, write aj + ajj, y+^i, ^ + % for x, y, z ^% on

p. 142.

Motation of rectangular axes, origin unchanged. Let the

direction cosines of the new axes, OX^, OTj, OZ-^, referred to

the old, be {l^m^n^, (l^m^n^), {l^m^n^.

Let the co-ordinates of a point, P, be {xyz) referred to the

old axes and {x' y' /) refen-ed to the new. Using the same

letters for the old axes as in Figure 96, and corresponding letters

for the new, we may write ON' = x', N'M' = /, and M'P' = /.

The projection of OP equals the sum of the projections of

0^', N'M', and M'P'.

Projecting on OX, OY, OZ in succession, we have

X = lix' + l^y' + lgz', y = mix' + m2y' + m32',

z := nj x' + nj y' + ng z' (xiii)

This substitution effects the required transformation of

co-ordinates.
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The nine direction cosines are connected by the six equations

1 = /j2 + ,1,2 ^ „i ^ i^ + ,„^ + n^ ^ l^ + mi + ni

by equation (i),

and = ^i/2 + '%% + %"2 = ''2 4 + '"2'"3 + ''2«3

= 4^1 +"'3'»1 + «3«1 W ^'^^ (i^)-

A function remains of the same degree after transformation,

for (xiii) shows that its degree cannot be raised ; nor can it be

lowered, for on transformation back it would then be raised.

Since l^, I^, l^ are the direction cosines of OX referred to

OXj, Ol'i, 0^1, &e., it follows that

1 = /j2 + li + ^^2 = Wj2 ^ „,^2 + „,^2 ^ n^ + ,i^2 + ,^2
^

and = i^i Mj + L vi.^ + ^3 m.^ — m^ u^ + m^n^ + m^ n.^

equations which can be shown to be algebraically equivalent to

the former six.

Example. Obtain the formulae of p. 1 74 by putting

Zg = nij = 0.

The General Equation of the Second Degree.

This may be written

ax^ + l/f + ci^+ 2ft/z + 2ffzx + 2 Axi/ + 2i!X + 2 v)j

+ 2wi + d = 0. (xiv)

I'Ae centre. As on page 176 refer to a new origin {xyz), 0',

chosen so that the new coefficients of j,', 1/, z shall be zero.

We must have ax -\- liTj -\- cjz -V u = \

//x + l/^+/z + v = V
{^^^)

(jx -yfjj + cz + w — I

The solution of these equations, in the notation of p. 175,

is found to be

'^ - y - -

^ = - -i

,

uA-VvR + wG uH+vB + ivI uG + vF+ivU A

and is always possible unless A = 0.
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After ti-ansformation (xiv) becomes

ffaj^ + i/ + ce2 4-2^2+2^^2! + 2 //a;^ + (^' = 0, . (xvi)

where (V = d- (Au'^ + Bv^ + Cir^+ 2 Fvtc + 2 Gwu + 2 Htiv) -^ A.

If a point P(«i_yi2,) is on (xvi), then -P' (— a^i —^i — ^^i)
is

also on it, and PP' is bisected at (/. 0' is the centre of the

surface.

The principal planes. We shall now show that the terms in

I/:, zx, xy can be removed by rotation of the axes of reference.

The method of p. 177 becomes unworkable and we must proceed

indirectly.

Let F= (a-\)a;2 + (i_x)/ + (c-X)22 + 2_;^2 + 2^2a;+2%.

Choose an angle Q to satisfy the equation tan 20 = •

Then by methods analogous to those of pp. 1 76-8, it can be

shown that F is identically equal to

«! {« cos + 1/ sin 6 — (/ cos 6 +/' sin 6) r}^

+ ^1 {«siu 6—y cos 6 + {/'cos fl—/sin 6) z}'^,

if {a-X}{6-\){c-X) + 2/ff/i-{a-\)/^-{b-\)ff'^

-{c-\)P = 0, . (xvii)

where flj + ii = a + 5 — 2X, a^bj^= {a— \) {b— X) — k^, C/= G,

Cf=F, C=a,b^, G=hf-{b-k)g, F= gh-{a-K)f.

Equation (xvii), called the discrimitiating cubic, has always at

least one real root (p. 239), say Aj.

Hence if p and p' are written for the distances of a point from

the planes x cos 6+ysm6— {g' cos 6 +/' sin 0) « =

and X sin 6—y cos Q + (/"cos Q —g' sin 6) 2 = 0,

the locus r = 0, when X = Xj, becomes by (v), p. 253,

a'f-\-b'p"^= 0, (xviii)

where a , V depend on ftj , Jj
, _/', g\ and and ai'e constants.

Take the line of intersection of these planes as the new axis

of r, and let their equations referred to new axes of x and y be

a; cos a +^ sin a = 0, x cos ^ +y sin /3 = 0.
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The locus I" = becomes

a {x cos a +y sin a)^ + &' (« cos /3 +y sin /3)^ = 0.

Now by p. 177 this can always be transformed to the form

a\x^ + b\y^ = 0, by rotation of the axes of x and y without

affecting that of e.

This is independent of z, so that if a point (Xjyj) satisfy the

equation, then (^j^j «) is on F = for all values of z. Hence

if we take the value « = «j, the eight points (±a'i +i/i ±2i) are

on the locus, which is therefore symmetrical with regard to the

three new planes of reference.

Hence aco^ + h-f + cz^ + 'ifyz + 2gzx+2 hxy— A^ (ou^+f + z'^)

can be transformed into a form without terms in i/z, zx, xy. But

a,.2+/ + ^2 = 0P2 = a,'2+/2 + /2, where P is {xyz) before and

(yy /) after transference.

.•. the product terms can be removed from the first pai't of

the expression alone, and equation (xvi) becomes of the form

a^x.'^ + b^y'^ + c^z^ + d' = 0,

which is aj^x'^ + L^y^ + e^z^ = 0, if / = 0, . . . (xix)

and, if/ 9^0, A.x^ + By'^ + Cz^ - \, (xx)

.,, p <J^ b, C,

where A, B, C are written lor —-pt —j, > ~ y

The new planes of reference are called the principal planet

of the surface.

- The discriminating cubic may be written

\^-\^(a-\-h-^c)^-\{ah^hc^ea-P-if-]fl)-tS. = 0.

It can be shown that its roots are «i, h^, Cj, that is, are

— d'A., —d'B, —d'C. For the preceding analysis shows that

F = can be transformed into the geometric statement (xviii)

only if X is a root of (xvii), and that then the result is

(a^-\)x" + {b,-\)y''+{a,-\)z^= 0,

which must also represent the geometric condition ; but if

A = «j, the equation becomes (ii—(ti)y'^ + (ci— aj)z^ — 0, that is

(perpendicular from ZOXf x const. + (perpendicular from XOYf
X const. = 0, the same form as (xviii). Hence a-^ and (by

similar reasoning) ij and Cj are the three roots of (xvii).

s 3
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The equation of p. 1 78, line 10, is analogous in two dimensions.

If A = 0, one root of (xvii) is zero. Thus in the case where

we cannot transfer to the centre, the removal of the product

terms gives the form

a^aP' + 6^/ + Cj/- +2u'x-\-2v'y-\-2 w'z + (\ = 0,

where a^, Sj, or c^ is zero.

Take Cj = and transfer to the origin

. — «' —v' —d^ b^u'^ + a^v'^-.

V ^1 ' 6j ' 22v' "iw'a-^b-^ ^

The equation becomes a^x^ + h-^f \-2w' z = Q. . . . (xxi)

If ^v'= 0, we have the form a-^x^ + b^y^ = h d^. (xxii)

If a second root of (xvii) (say Sj) also is zero, we get after

a simple transference

a^x'^ + 2v'y+2io' z =^ Q (xxiii)

Classification of Conicoids.

All forms of the locus represented by the general equation

(xiv) are called conicoids. In all cases (xiv) can be simplified

into one or other of the forms (xix) to (xxiii). Of these (xx) is

the general form and the others are limiting or special cases.

(xix) is a cone* with the origin as vertex, since if any point

on the line -=•=-=- lies on it, the whole line lies on it. If
I 111 n

«i, 5j, Cj are of the same sign the surface reduces to one point,

the origin. If ffj = 0, and b^, Cj are of different signs, it becomes

the planes y=-V-ir-
(xxi) is drawn in the case when a-^ and i^ are of diiferent signs

in rig. 97, and is called an hyperbolic paraboloid. If aj and b^

are of the same sign, the surface is entirely above {w' negative)

or entirely below {w' positive) the plane z = Q, and all hori-

zontal sections are similar elliijses ; this is an elliptic paraboloid,

* A cone is a surface generated by a line, wliicli always passes through

a fixed point (the vertex) and intersects a given plane in any assigned curve,
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(xxii) and (xxiii) are cylinders.* In (xxii) the generating

line is vertical, in (xxiii) it is in the direction (0, w' , —v').

All conicoids except the paraboloids and (xxiii) have three

planes of symmetry, viz. the planes of reference in (xix), (xx),

(xxi), and (xxii).

Form (xx) gives the central conicoids, the origin being the

centre.

If A, B, C are all positive, the surface is called an elliiisokl.

If, further, two of these (A, B) are equal, it is a spJieroid, prolate

if A = B > C, oblate if A == B < C. If A = B = C it is a

sphere.

The ellipsoid may be written -^ + "-2 + ^ = 1, and is a closed

surface, contained within the rectangular box se = ±(X, .y = +/3,

•c = + y. Oi, ^, y are its semi-axes. Its volume is iTra^y.f

Sections parallel to each principal plane are similar ellipses.

If A, B, C are all negative, the surface is imaginary.

If of A, B, C two are positive and the third (C) negative, the

equation may be written -5 + ^ 7=1- This is called an
0(2 ^2 y.

hyperloloid of one sJteet. All horizontal sections are similar

ellipses, all sections parallel to YOZ are similar hyperbolas, as

.are those parallel to XOZ. It is readily shown that the cone

«? tf- z'' .,...„.
-2 + "^ J — "^ i'^s within it m finite regions, while all its

generating lines are asymptotes to vertical sections. The shape

of the surface is that of an infinite dice-box. a and /3 are real

semi-axes.

If one (A) is positive and the others negative, the equation

may be written — - ^ 7 = 1- This is called an h/perboloid
a.' /3- y^ •''

of two sheets. The surface touches and lies beyond the planes

* A cylinder is .-i surface generated by a line, which moves parallel to itself

and intersects a given plane in any assigned curve.

+ The area of the ellipse on the plane s = Sj is irayS (' 1 - ^ V p. 169. The

volume is
2
J „ix0 M _ l^j. dz. Compare p. 215.
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X = ±01. All sections parallel to YOZ are similar ellipses. All

sections parallel to XOY are similar hyperbolas, as are sections

parallel to XOZ. The generating- lines of the cone

— — ~ =0
oc'^ /3^ y

are asymptotes, and the surface lies within this cone, a is a real

semi-axis.

The shapes of all these curves can be examined by the method

of p. 256, with the help of the examples there set.

The paraboloids may be obtained from the ellipsoid or hyper-

boloids by transferring to a vertex and following the method of

pp. 155-6.

If of A, B, C two are equal, say A = B, all horizontal sections

(in xix, XX, xxi, xxii) are circles, and the surface can be obtained

by revolving the curve At^ + C^*^ = or 1 , or — 2 w'^j or con-

stant, about OZ. Such surfaces are swfaecs of revohition,

[If a reflector is made in the shape of a paraboloid of revolu-

tion, every ray of light emanating from the focus of its parabolic

sections is reflected parallel to the axis (see p. 173). For an

ellipsoid of revolution the rays return to the other focus.]

Intersections of the Equations of the 1st and 2nd degrees.

Let Ix + my + n: = p be any plane. Transfer this and the

general equation of the second degree, so that Iw + my + nz =
becomes the plane X-^OY^. The plane becomes z=p and the

general equation remains in the general form (xiv) with its

coefiicients changed, say, to a', ...f, ... u\

The section on the plane z = p is

ii'x"- + h'f + /;j2 + 2f'r/p + 2g'j30o + 2 h'xi/

+ 2u'cis+2v'y + 27v'p + d = 0,

that is, a conic section.

As p varies, the resulting sections are similar to each other, as

their shape depends only on a', h', li'

.

The centre of any section is given by

ax-\-l)'y-^(fp-\-v'= = 7/« + 2>+/'^ + r' and z = p,

and as /; varies this is the fixed line through the centre of the
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eonicoid given by the first two of equations (xv) with a! , &c.

written for a, &c.

Hence every plane section of every eonicoid is a conic

section, and parallel planes give similar conies whose centres

are on a diameter of the eonicoid.

The Line and the Conicoid.

Let —r^ = -—— = -—— = r be any line and
I 111 n

Aa;2 +B/ + C2^= 1

be any central conicoid, where {«!iyiZ^ is /. Let Pj, P^ be

points of intersection of the line and surface. Then, as on p. 185,

ri(=/Pj) and 1\{— JP^ are roots of

A (*i + rlf + B (^1 + rmf \C{z^ + rnf = 1

,

i.e. of r^{Al'^ + Bm^ + Cti.^) + 2r(Al!i;^ + Bmy.^ + C>tz^)

+ Aiii-^^ + By^^ + Cz^^-l = 0. . . . (xxiv)

The Tangent Plane.

Let /move up to Pj, then AiC," + B^j^ + C Tj^ — 1 =^ and /,

is zero.

The plane AxXj + Byyj + CzZj = 1 .... (xxv)

then passes through Pj ; it contains the line JP^P^ if its normal

is perpendicular to JP-^P^, i.e. if Ax^l +Bi/-^m + C::-^n —
(from equations (iv) and (viii)).

But this is the condition that the second root of (xxiv) is zero.

Hence every line in (xxv) through Pj meets the surface in two

coincident points, and .'. (xxv) is the equation of the plane

which touches the surface at (a'j^'i^^i). [Compare the equation

A«iBi + By^i = 1 (p. 158).]

It now easily follows that Ix + my + >i.i = /; touches the surface

P m^ n^

Pole and Polar.

The tangent plane at [x'y' z') passes through a point (f r/ (), Q,

if Af«' + Br,/ + CCs'= 1- Hence A»f+ Bj/7, + CrC = 1 is
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a plane containing the points of contact of all tangent planes

through Q, and may be called the plane of contact for Q.

Then, as on p. 163, the tangent planes at the points, where

a varying plane through a fixed point P {noiy-y z^ cuts the surface,

are concurrent at a point {Q) whose locus is

Axx-^ + "Byy-y + CzZi= 1.

This plane is called the polar of P, and P is the pole of the plane.

If Q lies on the polar of P, P lies on the polar of Q.

Notice from equation (xxiv) that, just as on p. 185, if lines JPP\
JQQ' are drawn in fixed directions (Zm m) (Z' m' w') through a moving

point /, then —^—ptt. = -—rjr,—=—75——-^ ; so that the ratio of the
^ ' JP.JP' Al'^ + Brn'^ + Cn'^

rectangles made by the segments of two lines drawn through any

point to meet a conicoid depends on their directions only. Page 185

is a particular case, when J is confined to a plane.

Conjugate Planes and Diameters.

Let P-y P^ be a chord of an ellipsoid in a given direction

(J
mil). Let /be its middle point, so that the roots of equation

(xxiv) are equal and opposite and the coeificient of ;• is zero.

Thus the locus of /, the middle point of parallel chords, is

Alsc + 'Bmy-'r Cnz = 0, a plane through the centre.

Let op, be the diameter ^= — = -, meeting the surface^
I m n *=

at Qi (x'y' z). Then the tangent plane at Qj is

A«'« +B/^ + C/2; = 1,

x' if /
and is parallel to the locus of /, since -7- = — = — •

I m n

Hence the diametral plane A«'« + By'y + C/r = is the

locus of /, and bisects all chords parallel to the diameter OQj if

the tangent plane at Qj is parallel to the diametral plane.

Let Q2 {"^"1/"^") ^^ ^ point on this diametral plane and on the

surface.

Then A«',r" + B//' + C/f" = 0.
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The symmetry of the equation shows that all chords parallel

to OQ2 are bisected by a plane containing- OQ^. (Compare

pp. 159, 160.)

Now determine a point Q^ (af'y" z'") on the surface, such that

A«"«'" +B/y" + C/'/"= 0,

A«»"V+B/'y +C/"r'= 0.

Then, in whatever order we take the points, the diametral

plane containing two of them is parallel to the tangent plane at

the third, and bisects all chords parallel to the diameter through

the third.

OQj, OQ2J OQ3 are called conjugate diameters of the ellipsoid,

and the planes Qj'^^s' Q,z'^Q,\> Q,\^Q,% ^r^ conjugate planes.

Qi! ^2' ^3 ^'"^ I'^^l' since the ellipsoid is a closed surface.

In other conieoids the locus of the middle points of parallel

chords in direction {I'm'n') is the plane A^'a+ Bm'y + Cw'^ = 0.

Of the diametral planes in directions

(Ar -Bw! Cn') [Al" Bm" Cn") {Al'" Bm'" Gn'"),

each bisects all chords parallel to the intersection of the other two

if Al'l" + Bm'm" +Cn'n"^A.l"l"' + Bm"m"' + Cu"u"'

= Al"'l.' + Bm"'m:-\-CH"'n'= 0.

The planes are then conjugate planes, and their lines of inter-

section conjugate dircofions, as in two dimensions.

Evidently OQ-^, OQ^ ai'e conjugate directions for the plane

section Q-fiQ^.

If we write l^— i/A.x', l^= /A :;",... TOj = -/By'..., the

equations above, together with A.x'^ + By"^ + Cz'^ = 1, &c., are

equivalent to the six equations on p. 257. These are there shown to

necessitate 1 == 1-^ + 1^ + l^ = &e.

.
•

.
-7- + 5 + ;^ = ^'^ + ^"^ + ^'"^ + 2/'^ + • + )

and in the ellipsoidABC
this becomes a^ + ^2 + ^2 = qq^ + gqi ^ qq^^ (Compare p. 161.)

Using the method of p. 220, the tangent jRane, at (kj 2/1^1) on the

surface f{x yz)= ax^ + ftj/^ + cz^ + 2fyz + 2gzx + Ihxy -1 =

is (a; - Kj) . Dxf+ («/ - 2/i) • ^yf'^ (^ ~ ^1) • ^zf — Oj which reduces to

X (aWi + /ti/i + gz^ + y (tej + i^i +/2j) + ~ {gx^ +fy^ + csj)

=/K 2/1^1)= 1-
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The axes of f{x y z) = 0, to which form the general equation can

be reduced by transference to the centre as origin, can be obtained

from the consideration that if OA is an axis it is perpendicular to

the tangent plane at ^

.

Let {Imn) be the direction OA, and (wiyi^i) the point A.

Then?i = ^ = 2j.
Z 9/1 «
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Hence in the hyperboloid of one sheet two lines can be found

thiongh every point, which lie wholly on the curve. These are

called generating lines.

If the same process is applied to the hyperbolic paraboloid, the

same property is found ; if to the cone, all lines through the vertex

are generating lines ; and if to the cylinder, the moving line which

generates the surface is always a generating line.

Writing' the hvperboloid in the form —= ^ = 1 — '^ , we

readily see that all points on the line formed by the intersection

of = (\ — -) k and (- + -^k — \ + - lie on the curve,
a. y ^ I3-' ^X y' fi

whatever the value of k, and similarly with - + ^ = f 1 — -)/{•'

Oi y ^ B'

^a y^ /3

For various values of k, k' these form two systems of lines

;

every line k intersects every line k', since

X 11 e \

OL{k + k') p{kk'-l) y(k'-k) kk'+\

satisfies all the equations ; while it is easily shown that no two

lines of the same system intersect. The hyperboloid is in fact

of the form of two waste-paper baskets placed bottom to bottom,

each stmw from left to right intersecting each from right to

left.

It can be shown that if a line moves so as to intersect alwajs

three fixed non -intersecting lines, it generates a conicoid.

In the paraboloid ~2 ~ 02 ~ *''^' ^'^® sj^stems may be written

^ ' a ^ ' a j3 k

and (11) - + ^ = kiv, 7; = 77

'

^ ' a. ^ ' a /3 k'

and two lines intersect at —yy
—

j. = —
-f,—=- — -4t7 = - •

Oi{k + k) I3{k-k) 2kk' 2

The projections of the lines on the plane XOJ'are parallel to

the asymptotes in that plane.
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[The line EG drawn in PMgure 97 is the projection of the

generating line «— \/l4 = 2y+\/l4 = s -/f.

The lengbh EG is VlQ, and G^ is 14 above E. The gradient

is therefore 14 -r Vtq = tan 59° 8'.]

Circular Sections.

In connexion with equation (xxiv) let / be the centre of the

conicoid, and let JPP' be confined to the diametral plane

((?j fflj Wj). E.eqmred to determine the plane (/j Wj Wj) so that the

section on it shall be eiienlar.

We must have that ll-^ + mm-^ + nn^ = 0, and that the roots of

(xxiv), which then becomes r^ (A(?^ + B7;z^ + C?*^) — 1 = 0, must

be independent of Imn.

Let A be algebraically the greatest and C the least of A, B, C.

A .?2 + B ni^ + C ?i2= (A- B) (?2_ (B - C) ?i2 + B from equation (i)

.

Choose l.^m^7i^ so that ^^^. n-^ = A— B :B— C, and ff^j = 0.

Then ll^ + nti-^ = 0, and P : 7i^ = n^^ : /j^.

.-. {A-B)l^= (B-C)?A

Hence Al^ + Bm^ + Cn'^ = B, and r = -\ zz, for all direc-

VB
tions in the two diametral planes ——'

—

= + "

-"

—

^ , which

are therefore circular sections.
vA— ii vii —

O

Since parallel planes cut off similar sections, all sections in

these directions are circular.

Of course, if A or C is the intermediate quantity, the equation

is modified.

This analysis applies to all central conicoids, and can be

adapted to the elliptic paraboloid, to the cone, and to the

cylinder Ax^ + Bi/^ = i, if A, B, /i are positive.

In surfaces of revolution the directions become coincident.

The points of contact of tangent planes parallel to circular

sections are called umhilics ; in the neighbourhood of such points

the surface approximates to one of revolution.

Example on pp. 262-5. Show that the area of the section of

AcB^ + Biy^ + C^^ = 1 by Ix + my +nz — p

is TT (231^ -2>^) -i-lh^- v'ABC,

where p-^^ — l'^/A + 7n^/B + n'^/C. [Project on plane s = O.j



NOTE ON THE WORDS 'IREATIONAL' AND
' INOOMMENSUEABLE

'

In this book we have followed the usage which has been

common of keeping the word irrational for surds, that is roots

of numbers whose roots cannot be expressed as an integer (n)

or the ratio of two integers {p : q) ; while the word incom-

vieumrable has been applied for all other quantities, such as

e, TT, logarithms, trigonometrical ratios, &e., whether algebraic

or geometric, which are not of the form 0, m, or /j -~ q.

But in modem mathematics it is desired to base the whole

of algebra on a system of definitions and rules which are entirely

independent of space or physical quantity, and since the science

is then independent of measurements the word 'incommensurable'

is inappropriate. Also it is conti'ary to the principle of economy

in the use of terms to use three words where only two ideas

are to be expressed.

It has been therefore authoritatively suggested that all alge-

braic numbers, whether resulting from obtaining the limit of

infinite series or any analytic process,* which cannot be expressed

as 0, n, orp -i- q, shall be termed irratiotial, including the species

surds ; while two geometric or two physical quantities, which

are such that the ratio of their algebraic measurements is

irrational, shall be teraied iucommeumrdble with each other. The

word incommensurable will then not occur in pure algebra.

* A surd can be expressed as an infinite series thus

:

V'f =-V9^ = S(l-S)i = 3(1-*- 5-|./,-},

and in other ways.



ANSWEKS TO EXAMPLES

Page 7.

2. 3^x2=. 3. 3y/6. 4. l-r^6». 5. a~b. 6. J + ah^ + b^.

Page 10.

1. The logs of 120, 125, 128, 121 are 2.079, 2.097, 2-107, 2-083.

2. The logs of 13, 17, 19 are 1-114, 1-230, 1-279.

4. 1-26, 1-183, .431. 5. 17| years; £357. 6. 2-47. 7. 1016.

Page 13.

2. a;>l or <-4. 3. -b>a.

Page 16.

1. 143. 2. 2046. 3. -499992. 4. £1359.

5. ^(3»' + 3m-l)(2« + lj(re+l)». 6. ln{n + l)(n + 2).

7. ln(n+l){n + 2){n + S). 8. in{n + l){n + 2).

Page 24.

1. 64. 2. 40320; 4. 3. 1-06152; 1-2668x10''-

4. x'>-6x* + 15si>''-20 + 15x-'-Qar* + x-\

5. ,jC(a;''*-".2'; 112640.K-'.

Page 55.

4. (i) »il80°+(-l)»30''. (ii) »180° + 22|°. (iv) «180"' + 63|'.

5. (i) 90°, 26°, 64°; 333. (ii) 32-8, 133°, 20°; 301.

(iii) 27°, 17-6, 21-7 ; 86-6. (iv) 121°, 34°, 6-1 ; 52 or 9°, 146°, 1-1 ; -93.

Page 68.

1,2, and 3. 3° 33°
7J°. 4. » 360° -37°.

sin -052 -545 -131. 7. 35°, 86°, 59°
; 12.

cos -999 -839 .991. 8. 104°, 51°-

tan -052 -649 -132.

Page 85.

1. (/ = ai^
; p = g cos 2 — sin g ^/l - 2".

Page 97.

2. -8-58257, -58257. 3. 2,4, -1.

6. a;' - 16a:' + 85a:' -158a; + 46 = 0. 7. 2.0927.

8. 2-2338,2-7185, -3-9522.



ANSWERS TO EXAMPLES 271

Page 105.

The limits are (a) 2, (6)-^ (c)12, {d)-^,l {e)l, (/)0, (.9)0.

Page 106.

2. (i) n(» + l). (ii) 2 re (» + !)' a:"-*.

Page 118.

4. Error is less than '16 of ^ •

If w, n, and (Z, are positive, the error is —mnd^dj + B, where

E<lm{m~l). =-^— (l-»(^2 + J'*" + l<^a'') + J»»(^A« (» + !)•

Page 137.

1. 8a:-9y = 12. 2. 5a;+ 45r = 2, 4a;-5y + 23 = 0.

3. X-1J+1 = 0, a;-3t/ = 11, a:-5y = 23; (-7, -6).

4. lla^ + 32/=17, x = 2, 1x+Zy = ^; (2, -f).

Page 141.

2. 33 (y- 2) = (a; -3) (30 + 17/3).

4. a; + 2/ = 0, 8a; + 4«/ = 5, — 2a; + 4«/ = 5, 3a; + 9y = 5, 3a: — 1^=5.
Inscribed centre (^j, j^^); escribed centres (f, |), (f, — |), ( — f, |).

5. A straight line.

Page 148.

jjjL£uaifiuu u



272 ANSWERS TO EXAMPLES

Page 200.

1. (i) -2 sin 2 a;, (ii) 2sec^2a!. (iii) 2 cos a; - 3 sin a;, (iv) 4a; -3.

(v) 9a:2-4. (vi) - V (vii) -2^(a:+3)^ (viii) -fa:(l--Ja!''H.

Page 206.

3. Max. when a; = 2
, min. when a; = 2 H — •

^3 ^/3

4. Min. when ;r = - 1-85. (Use Horner's method, p. 95.)

5. Max. when a: = » .360° + 38° 41', min. when a: = ». 360° + 213° 41',

6. Min. when x = - • 7. Min. when x = -k max. when a; = 0.
e

Page 216.

I. IJ. 2. 1- —^. 3. 91ogi„e. 4. log,«.
72

Page 217.

1. tt-gt, ut-lgt\ 2. Si.

3. ii)ij = ^ax^+ hx+C. (ii) ij = ^aii^ + lbx'' + ex + C.

(iii) y = C—acoBC. (iv) 2 «/ = e'' (sin a; — cos a;) + C.

(v) 2/2 = 4«^+C. (vi) S{x + tjf = 2a^+C.
(vii) tan ^ + cos a; = C. (viii) y = +asin~'a; + C
(ix) y . cos X = C. (x) 8?/ = oa;* + Cia;' + Cj

Page 232.

Modulus 2, amplitudes 0, + ^? i "7"' i "t"'

+ 3-56 and 1.78( + l + i .1-732).

Page 249.

sinh 144 ... = 2 ; tanh -423 ... = -4.
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